自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

weixin_55010563的博客

希望可以帮到你

  • 博客(2654)
  • 收藏
  • 关注

原创 HTTPS 的通信加解密过程,证书为什么更安全?

证书中包含了服务器的公钥和其他身份信息。6.客户端和服务器使用对称密钥进行加密通信:客户端和服务器通过协商好的对称密钥进行加密和解密,这意味着数据传输过程中使用相同的密钥进行加密和解密,保证了数据传输的机密性和完整性。证书的使用能够确保服务器的身份和通信的安全性,增加了整个通信过程的安全性和可信度。4.客户端生成密钥:如果证书有效,客户端会生成一个用于对称加密通信的随机密钥,并使用服务器的公钥进行加密。5.服务器解密消息:服务器收到客户端发来的加密密钥后,使用自己的私钥对其进行解密,获取对称加密的密钥。

2023-12-13 14:02:52 537

原创 ArgoCD:我的GitOps探索之旅与未来展望

ArgoCD作为GitOps实践的核心工具,为Kubernetes应用部署带来革命性变革。本文分享了从初识到精通ArgoCD的实战经验,包括依赖管理、健康检查等关键案例,并总结了多仓库策略等提升效能的技巧。文章展望了ArgoCD在基础设施即代码、边缘计算等领域的应用前景,强调其将成为多云管理的重要工具。作者呼吁社区共同参与ArgoCD的实践与贡献,推动GitOps生态发展。

2025-08-05 08:06:13 160

原创 SpringBoot系列之集成EasyExcel实现百万级别的数据导入导出实践

本文介绍了在SpringBoot 2.2.1中集成Alibaba EasyExcel实现百万级数据导入导出的实践方案。通过分Sheet处理、分批查询和批量写入等技术,有效解决了大数据量场景下的内存溢出和性能问题。导出功能采用多线程并发处理,将100万数据导出时间从45秒优化到18秒;导入功能通过监听器模式和批量插入,实现高效率的数据加载。文章还提供了完整的项目结构、核心代码示例、性能优化技巧以及常见问题解决方案,为开发者提供了可落地的技术参考方案。

2025-08-05 08:05:37 394

原创 JuiceFS on Windows: 首个 Beta 版的探索与优化之路

摘要:JuiceFS 团队近期发布了 Windows 客户端的 Beta 版本(社区版 1.3/企业版 5.2),针对该平台进行了全面优化。文章重点介绍了开发过程中面临的四大挑战:Unix与Windows系统差异、Linux FUSE与WinFsp接口差异、Windows内核黑盒特性以及有限的文档资源。在解决方案方面,团队通过重构工具集、优化API兼容性、改进权限管理和提升性能(小文件读取性能提升5倍)等关键改进,使Windows客户端达到基本可用状态。目前该版本已支持后台挂载、多盘符挂载等企业级功能,并修

2025-08-05 08:04:59 381

原创 深入指南:在SCSS中高效使用@font-face引入自定义字体

本文详细介绍了在SCSS中使用@font-face引入自定义字体的方法与优化策略。内容涵盖基础语法、核心属性解析,重点展示了SCSS中的三种优化实践:变量集中管理、字重映射系统和字体族分组管理。同时提供了性能优化关键措施(字体格式组合、子集化处理、预加载)和常见问题解决方案(路径错误、字重不匹配等)。文章还给出了字体选择、CDN托管等实用建议,帮助开发者高效实现网页字体定制。

2025-08-05 08:04:22 188

原创 Django集成图片验证码功能:基于django-simple-captcha实现

本文介绍了如何使用django-simple-captcha库在Django项目中集成图片验证码功能。该库支持多种验证码类型(随机字符、数学运算等),具有高度可定制性。文章详细说明了安装配置步骤,包括安装依赖包、settings.py配置和数据库迁移。同时提供了前后端实现方案:后端通过视图集处理验证码生成与验证,前端则使用Vue组件实现验证码显示、刷新和校验功能。该方案能有效防止自动化脚本攻击,提升Web应用安全性。

2025-08-05 08:03:09 128

原创 一个被BCL遗忘的高性能集合:C# CircularBuffer<T>深度解析

本文将介绍作者在天体运行模拟器项目中实现的高性能C# CircularBuffer<T>结构。该循环缓冲区使用固定长度数组作为存储,通过_end指针和HeadIndex计算实现环形覆盖机制,能够在添加新元素时自动丢弃最早的数据,完美解决了传统List<T>无限增长导致的内存问题。文章详细解析了其实现原理、时间复杂度分析(主要操作均为O(1)),并展示了在天体轨迹记录中的实际应用场景。相比List<T>方案,该实现避免了频繁的内存复制操作,在大数据量处理时性能优势显著。

2025-08-05 08:02:32 525

原创 LangChain框架入门06:手把手带你玩转LCEL表达

本文介绍了LangChain框架中的LCEL表达式语言及其核心组件。LCEL提供了一种声明式方法来构建复杂AI处理链,通过管道符号连接不同的Runnable组件(如提示词模板、大语言模型、输出解析器等),使代码更简洁、可组合且易于调试。文章详细讲解了Runnable接口的标准方法(invoke、batch等),并展示了RunnableBranch条件分支、RunnableLambda函数转换、RunnableParallel并行处理以及RunnablePassthrough数据传递等高级用法。通过具体代码示

2025-08-05 08:01:55 218

原创 PandasAI连接LLM对MySQL数据库进行数据分析

本文介绍了如何使用PandasAI 3.0结合DeepSeek大语言模型对MySQL电商数据库进行智能分析。通过创建包含客户和订单信息的MySQL数据库,演示了如何使用PandasAI连接数据库并进行自然语言查询。文章详细说明了数据准备、环境配置和Python实现过程,包括数据库表结构设计、PandasAI初始化及自然语言查询方法。特别指出PandasAI 3.0相比2.X版本的优势,如无需自定义LLM类即可连接自定义大模型,同时也指出了其数据接口设计的一些特殊限制。该方案为电商数据分析提供了一种高效的自然

2025-08-05 08:01:18 564

原创 Diff算法的简单介绍

摘要:Diff算法是一种用于比较虚拟DOM树差异的高效算法,是现代前端框架的核心机制。它通过比较内存中的JavaScript对象而非直接操作真实DOM,找出节点变化并计算最小变更集,显著减少DOM操作成本。Vue中的Diff算法采用组件级颗粒度和优化策略(如key标识、静态提升),在Vue3中进一步通过编译优化提升性能。该算法解决了直接操作DOM的性能瓶颈和开发复杂度问题,实现了声明式编程和高效UI更新的平衡,是前端框架高性能渲染的关键技术。

2025-08-05 08:00:41 516

原创 抽象与性能:从 LINQ 看现代 .NET 的优化之道

摘要:现代.NET中LINQ的抽象设计并非性能瓶颈,反而通过运行时优化提升了性能。测试显示LINQ的Sum()比手动循环快5倍,得益于SIMD等优化技术。编程语言发展史表明,高级抽象(如C++类、SQL)通过向编译器传递更多意图信息,往往能实现比手工优化更好的性能。LINQ与SQL类似,其声明式风格为运行时提供了充分的优化空间,打破了"抽象必然牺牲性能"的固有认知。

2025-08-03 08:06:12 327

原创 MySQL 23 MySQL是怎么保证数据不丢的?

MySQL通过binlog和redolog机制保证数据不丢失。binlog写入流程:事务提交时,binlog cache一次性写入binlog文件,持久化时机由sync_binlog参数控制。redolog写入流程:事务执行过程中先写入redolog buffer,提交时根据innodb_flush_log_at_trx_commit参数决定是否持久化到磁盘。MySQL采用双1配置(两个参数都设为1)确保数据安全,并通过组提交机制(LSN)优化磁盘IO性能,在prepare阶段和binlog写入阶段批量处理

2025-08-03 08:04:59 382

原创 [Bukkit插件开发]手持发射器箭矢机枪 教学文档 面向Python/C#开发者入门Java与Bukkit API

这篇教程面向Python/C#开发者,指导如何开发一个Bukkit插件,实现"手持发射器箭矢机枪"功能。主要内容包括: 开发环境搭建:安装JDK、IDE、构建工具和服务器 Java与Bukkit核心概念: Java语法对比Python/C# Bukkit的事件、监听器和调度器系统 项目结构与配置文件(pom.xml/plugin.yml) 功能实现详解: 玩家交互事件监听 使用Bukkit调度器实现持续射击 箭矢生成与消耗逻辑 随时间增加的射击扩散效果 任务停止与资源清理 构建、部署与测

2025-08-03 08:04:23 296

原创 高效编解码协议之protobuf协议详解

本文详细介绍了Google开发的高效二进制序列化工具Protocol Buffers(protobuf)的使用方法。内容包括protobuf的核心特性(跨语言支持、高效编解码、强类型约束、向后兼容)、开发环境配置、数据结构定义方法(.proto文件编写)、手动与Maven插件两种编译方式,并提供了完整的Java测试代码示例。特别对比了protobuf与JSON(Hutool和Jackson)在序列化/反序列化时的性能差异,通过JMH基准测试显示protobuf在吞吐量(23万ops/s)上显著优于JSON方

2025-08-03 08:03:44 736

原创 还在为调试提示词头疼?一个案例教你轻松上手!

摘要: 本文介绍了如何利用火山方舟的PromptPilot平台优化提示词,快速提升AI模型的理解能力。通过工地安全帽检测案例,详细演示了从基础提示词编写、单条测试调试到批量评估优化的完整流程。平台支持实时优化提示词、对比模型回答、自定义评分标准,并能生成智能优化报告,帮助用户高效获得符合预期的AI输出结果。新发布的豆包模型(Doubao-Seed-1.6)在深度思考模式下表现优异,结合PromptPilot的批量处理功能,可大幅提升提示词优化效率。

2025-08-03 08:03:01 264

原创 大白话:什么场景适合做 AI Agent 应用?

本文用通俗语言解析了AI Agent应用的特点和适用场景。普通应用是工具,AI应用是智能工具,而AI Agent应用则是能自主思考执行的"实习生"。最适合AI Agent的场景有三类:1)需要复杂决策的业务(如VIP客户赔偿判定);2)规则繁多的领域(如合规审查);3)处理非结构化数据的任务(如文档信息提取)。另外,单Agent适用于简单流程任务,多Agent则适合复杂流程的分工协作。整体来看,AI Agent应用为传统低效、易错的业务流程提供了智能化解决方案。

2025-08-03 08:01:48 349

原创 学习 TreeWalker api 并与普通遍历 DOM 方式进行比较

TreeWalker与querySelector性能对比分析 本文对比了TreeWalker API与传统querySelector方法在DOM遍历中的性能表现。TreeWalker提供了灵活的DOM遍历方式,支持前向/后向遍历、节点过滤和动态修改。测试显示,在复杂DOM操作场景下(如嵌套1000个元素并执行增删操作),TreeWalker比递归+querySelector快约20%。当仅进行简单遍历时,TreeWalker仍具优势,但差异主要源于while循环与递归的效率差异。在扁平DOM结构中,两者性能

2025-08-03 08:00:35 226

原创 【Azure Bot Service】在中国区Azure上部署机器人的 Python 版配置

在中国区Azure上部署Python版Azure Bot Service时,官方文档缺乏Python SDK配置说明。本文提供了详细配置方案:需要使用CloudAdapter构建适配器对象,并在config.py中配置关键参数,包括APP_ID、APP_PASSWORD、APP_TYPE等身份验证参数,以及中国区特定的OAuth_URL(https://token.botframework.azure.cn/)和OpenID元数据地址等。这些配置确保了Python SDK在中国区Azure环境中的正常运行,

2025-08-02 11:08:50 231

原创 通过胜率理解偏好学习的理论与优化方法

本文从胜率视角构建偏好学习统一框架,分析胜率优化方法(RLHF等)的理论优势及非胜率方法(DPO等)的局限性。研究表明,胜率是评估生成模型的合理指标,能同时兼顾偏好与流行度。胜率优化方法具有数据一致性和抗偏差优势,而非胜率方法存在理论缺陷。作者提出改进建议,并扩展胜率优化方法范畴,为偏好学习提供新思路。

2025-08-02 11:08:14 198

原创 免费的个人网站托管-GitHub Pages篇

GitHub Pages 提供免费的静态网站托管服务,无需服务器知识即可搭建个人网站。支持两种站点类型:个人/组织站点(username.github.io)和项目站点。搭建步骤:1)新建同名仓库;2)推送静态文件(如index.html);3)访问对应URL即可。适合前端开发者快速上线个人网站,免去服务器购买、域名注册等复杂流程。

2025-08-02 11:07:37 179

原创 Excel: xls与xlsx格式转换排坑指南

《Excel格式转换常见问题指南》总结了XLS转XLSX时的主要问题:1)数据类型差异,XLS的General类型在XLSX中需要明确指定,需注意文本、数值等类型的匹配;2)空值处理差异,XLS不区分空串和Null,而XLSX会区分;3)换行符差异,XLS使用CR+LF,XLSX使用LF,需正则修正;4)默认值处理不同,XLS会对不符合数据类型的内容显示警告并可能强制转换。转换时需特别注意这些数据兼容性问题。

2025-08-02 11:07:01 279

原创 LangChain框架入门04:10分钟优雅接入主流大模型

本文介绍了如何在LangChain框架中接入不同的大语言模型。首先将模型分为文本生成模型(LLMs)和聊天模型(Chatmodels),并说明了两者的输入输出差异。然后详细阐述了聊天模型的标准参数配置,并提供了OpenAI和通义千问模型的具体接入示例。文章还解释了LangChain中的Message组件类型及其属性,最后展示了如何通过统一接口调用不同厂商的大模型,实现AI应用的灵活搭建。

2025-08-02 11:06:25 294

原创 Vibecoding 新体验:实测 Qwen3 Coder 代码生成效果

在本方案中,D 和 X 都可以清晰的感知他们产出的内容是否准确,其中 D 的生成结果会有成功和失败的反馈通知,成功后会进入下一步流程操作(通知 X 或者询问 mock 数据生成), 而失败则比较灵活,失败会有详细的失败信息, 可能是建表错误,也可能是数据插入错误,根据这些环境反馈信息,D 可以自主修正解决。对于更新,请重复使用先前的标识符。不像我们构建逻辑程序,非此即彼(if else),自然语言的约定范围是一个模糊的范围,我们只能靠不停的输入 重要,重要,非常重要这样的提醒来修复输出的问题。

2025-08-02 11:05:48 553

原创 基于阿里云RDS SQL Server + 函数计算 + 通义AI构建智能销售分析平台Demo

摘要:本文介绍了一个基于阿里云RDSSQLServer、函数计算和通义AI构建的智能销售分析平台Demo。该平台利用微软WorldWideImports示例数据库,通过5种核心SQL查询实现热销商品分析、商品关联挖掘、库存状态分析等业务场景,并整合通义AI进行数据洞察和营销素材生成。架构采用RDS作为数据存储层、函数计算作为无服务器计算引擎,前端通过HTTP请求调用接口。文章详细展示了从数据库准备、大模型集成到前端实现的完整技术链路,为类似企业级应用提供了云原生与AI结合的实践参考。

2025-08-02 11:05:11 633

原创 高效编解码协议之protobuf协议详解

本文详细介绍了Google Protocol Buffers(protobuf)的高效二进制序列化工具。主要内容包括:protobuf的跨语言支持、高效编解码、强类型约束和向后兼容等核心特性;Windows环境下protoc编译器的安装配置;通过.proto文件定义数据结构并生成Java代码的两种方式(手动编译和Maven插件);完整的Java测试代码示例。最后通过JMH性能测试对比了protobuf与Hutool-JSON、Jackson在序列化/反序列化方面的性能差异。测试结果显示protobuf在吞吐

2025-08-02 11:04:33 715

原创 第三人称——骑马系统以及交互动画

本文介绍了Unity中骑马系统和交互动画的实现方法。骑马系统通过ThirdPersonRidingHorse脚本控制角色上下马过程,包括禁用角色控制器、设置父对象、切换动画层等操作,并使用MalbersAnimations插件实现马匹控制。交互动画部分以开宝箱为例,展示了如何通过PlayableDirector和Timeline实现角色与场景对象的交互,包括动画匹配、触发器检测和播放控制。两种系统都实现了角色在不同状态间的平滑过渡,为游戏中的交互系统提供了完整解决方案。

2025-08-02 11:03:51 741

原创 抽象与性能:从 LINQ 看现代 .NET 的优化之道

摘要:本文探讨了LINQ在现代.NET开发中的性能优化潜力,打破了"LINQ性能差"的误解。通过基准测试显示,LINQ的Sum()方法比传统for循环快5倍,这得益于.NET运行时自动应用SIMD等优化技术。文章类比C++和SQL的发展,说明高级抽象不仅提高开发效率,还能为底层优化创造条件。事实上,编程语言的抽象与性能并非对立,合理使用抽象反而可能带来更好的性能表现。

2025-08-02 11:03:15 357

原创 【Python自动化】飞书多维表格全流程管理:从创建到数据写入实战

【摘要】本文介绍了如何使用Python实现飞书多维表格的自动化管理,包括创建表格、字段配置和数据写入全流程。文章详细讲解了环境配置、核心功能实现(表格创建、智能字段管理)、数据写入优化(批量处理、错误重试)等关键技术点,并提供了完整的实战案例和源码。通过本文,读者可以掌握飞书API的调用方法,实现高效的表格自动化管理,提升数据处理效率。特别适合需要频繁操作飞书表格的开发者参考使用。

2025-07-31 16:12:45 151

原创 爬取微博评论数据的技术实现

本文介绍了如何使用Python的DrissionPage库爬取微博评论数据。通过浏览器模式获取登录态后切换至轻量级Session模式,利用微博API实现分页爬取。技术栈包括DrissionPage、DataRecorder和Loguru等工具,重点解析了登录、数据清洗和分页处理等核心功能。文章提供了完整代码实现,并强调需控制请求频率、遵守平台协议等注意事项。该方法可实现高效获取微博评论数据并保存为Excel文件。

2025-07-06 16:15:51 476

原创 《爬虫开发》核心观点与学习指南

爬虫开发既是技术也是艺术,需要平衡效率、合规与创新。从基础库到AI工具,从单页面爬取到分布式系统,循序渐进的学习和持续实践是成功的关键。记住,最好的爬虫工程师不仅是技术专家,也是数据伦理的守护者。"最好的学习方法是带着具体问题去实践,从'如何爬取豆瓣电影'到'如何构建IP代理池',每个问题解决都是一次能力跃迁。"2025年的爬虫开发已进入'AI协同'时代,传统基于规则的解析正在被语义理解取代。: Cloudflare新政要求AI爬虫需获得网站明确许可,标志着"默认拦截"时代到来。

2025-07-03 16:01:33 1247

原创 DotTrace系列:9. 大结局之 跨平台 和 自定义行为 诊断

比如我只想分析某一个方法,厉害的是 dottrace 还真可以做到,在 nuget 上引用 JetBrains.Profiler.Api 包,然后用 MeasureProfiler.StartCollectingData() 和 MeasureProfiler.SaveData();Console.WriteLine($"读取块 {chunkCount}, 大小: {bytesRead / 1024}KB, 总计: {totalBytesRead / 1024 / 1024}MB");

2025-07-01 08:05:37 533

原创 使用这个model操作数据库,一爽到底

在这里,我们再来看看Vonajs提供的Model能力,可以让我们用简洁、优雅的代码全方位操作数据库,比如,动态分表、软删除、多租户、动态数据源、二级缓存,等等。builderSelect 方法也是获取 knex query builder 的实例,与 builder 不同的是,builderSelect 支持软删除和多实例/多租户。我们再来看看Vonajs提供的Model能力,可以让我们用简洁、优雅的代码全方位操作数据库,比如,动态分表、软删除、多租户、动态数据源、二级缓存,等等。

2025-07-01 08:05:05 663

原创 05 - Multitouch/RoutedEvents例子 - 自己实现Canvas

自己写的碰撞测试,是基于点集碰撞测试,可以处理任何点集,所以大家可以继承Shape类,写自己的Shape类。Canvas目前支持的功能,单选,多选,单选移动,多选移动,二指手势缩放,多指手势选中。new PointF(X + Width, Y + Height), // 右下。new PointF(X + Width, Y + Height), // 右下。new PointF(X + w, Y + h), // 右下。new PointF(X + Width / 2, Y), // 顶点。

2025-07-01 08:04:32 451

原创 真正的生产力来了!Docker迁移部署两步搞定!

⏰ [17:18:42] 💾 导入数据卷: zammad-docker-compose_zammad-backup (来自 /tmp/docker-unpack-q47OnW/zammad-docker-compose_zammad-backup.tar.gz)⏰ [17:18:23] 📦 解压主包: /home/ubuntu/apps-docker/zammad-docker-compose.tar.gz 到 /tmp/docker-unpack-q47OnW。

2025-07-01 08:03:55 259

原创 典型深度学习训练流程

锅铲(Linear 层):把这条面团分成 10 份(对应 10 种服饰),然后尝出“味道”好坏(logits)。味道评分(CrossEntropyLoss):把锅铲出来的 10 份“口味”跟真实标签做对比,打分(损失值)。切菜:把图片分成「训练集」和「测试集」,一次处理一小盘(batch),这样不会下锅(显存)爆炸。翻炒(反向传播 + 参数更新):不断根据味道评分微调锅铲角度(网络权重),让菜越炒越香。平底锅(Flatten 层):把 28×28 的图片“摊平”,变成一长条面团(向量)。

2025-07-01 08:03:21 189

原创 Django数据库配置避坑指南:从初始化到生产环境的实战优化

内容包括数据库连接设置、驱动安装、配置检查、数据表生成、初始数据导入导出,并提供真实项目部署场景的操作步骤与示例代码,适用于开发、测试及生产环境搭建。myapp_system和myapp_infra是两个Django的应用,分别在其下创建 fixtures目录。在 Django 中,Fixtures 允许你将数据库中的数据导出,或加载到数据库中,通常用于测试、初始化数据库或迁移数据。在Django后台管理项目中,myapp_system和myapp_infra是两个Django的应用。

2025-07-01 08:02:49 327

原创 性能调优:表的连接方式介绍(NESTED LOOP, SORT MERGE JOIN, HASH JOIN )

为了解决NOT IN 和 <>ALL 对NULL值敏感,Oracle推出了改良的反连接,被称为Null-Aware Anti Join,执行计划中出现的HASH JOIN ANTI NA,这个关键字NA就是Null-Aware的缩写,这里oracle就是要告知所采用的不是普通的hash反连接,而是改良的反连接,是可以处理null值的。在缺乏数据的选择性或者可用的索引时,或者两个源表都过于庞大(所选的数据超过表记录数的5%)时,排序合并链接将比嵌套循环链接更加高效。半连接和普通的内连接不同,半连接会去重。

2025-07-01 08:02:16 717

原创 商品中心—16.库存分桶调配的技术文档

步骤四:触发库存回收,将当前下线的分桶还存在的库存都回退到中⼼桶。log.info("本次分桶:{},回源库存:{}, 回源后分桶库存:{}, 中心桶剩余库存:{}", bucketCapacity.getBucketNo(), inventoryNum, incr, decr);log.info("本次分桶:{},回源库存:{}, 回源后分桶库存:{}, 中心桶剩余库存:{}", bucketCapacity.getBucketNo(), inventoryNum, incr, decr);

2025-07-01 08:01:42 676

原创 快速理解向量和向量数据库

如果把这些属性用数字表示,比如美式咖啡(苦味 8 分,价格 25 元,甜度 0 分),这组数字[8,25,0]就组成了一个 “向量”。它就像一个巨大的 “数字图书馆”,里面存放的不是书籍,而是各种用向量表示的信息,比如图片、文章、语音等。维度就像是描述事物的 “角度”,维度越多,例如再加上“香味,颜色”等维度,对咖啡的描述就更细致。向量数据库不仅能存向量,最关键的是具备强大的相似性搜索能力。比如你存入一张猫的图片向量,它能快速找出数据库里所有和这只猫 “长得像” 的图片向量,这是传统数据库很难做到的。

2025-07-01 08:01:06 166

原创 我用这13个工具,让开发效率提升了5倍!

真实案例:某金融系统使用IDEA的Database Tools直接调试SQL,SQL优化时间减少70%。经过多年的工作经验,我发现顶级程序员都有一个共同点:他们不仅是优秀的编码者,更是工具链的架构师。效率数据:使用Cursor后,日常CRUD开发效率提升200%,复杂算法实现时间减少60%。调优成果:某交易系统优化后,内存占用从8GB降至2GB,GC停顿减少80%。效率对比:传统绘图工具修改架构图需30分钟,PlantUML仅需2分钟。效能数据:接入CI/CD后,发布频率从月均2次提升到日均10次。

2025-06-29 08:05:41 305

图片格式转换-批量高效

在日常工作和生活中,我们经常需要处理大量的图片文件。PNG格式因其无损压缩和透明背景特性而被广泛使用,但在某些场景下(如网页优化、打印、上传到某些平台等),我们可能需要将PNG转换为更通用的JPG格式。手动转换不仅效率低下,还容易出错。为此,我开发了一款**「专业PNG转JPG批量转换工具」**,支持一键批量转换,保持画质无损,并具备友好的图形界面。

2025-04-11

基于python的微信记账小程序

基于python的微信记账小程序

2025-04-22

基于springboot的园林绿化管理系统

基于springboot的园林绿化管理系统

2025-04-22

骚神插件8.5版本,助理元素快速定位,脚本开发

骚神插件8.5版本,助理元素快速定位,脚本开发

2025-04-02

抖音视频关键词采集、视频评论采集

抖音视频关键词采集、视频评论采集

2025-03-28

心血管预测分析-网站-flask-速随机森林-mysql

管理员:用户管理、操作日志管理、数据集管理与分析、模型监控; 用户:健康数据管理与分析、健康评估、风险预测

2025-02-23

关键词采集抖音视频信息,根据视频id采集对应视频评论信息支持导出csv.xlsx

关键词采集抖音视频信息,根据视频id采集对应视频评论信息支持导出csv.xlsx

2025-03-27

数据集-途家民宿评论信息

数据集-途家民宿评论信息-数据分析-景点分析等

2025-03-11

基于电商平台的订单数据进行深入分析,旨在通过数据挖掘和可视化手段,洞察电商业务的运营状况,识别市场趋势,优化产品策略,并提出针对性的营销策略建议 报告涵盖数据预处理、财务分析、产品分析、市场分析

电商数据分析报告 概述 本报告基于电商平台的订单数据进行深入分析,旨在通过数据挖掘和可视化手段,洞察电商业务的运营状况,识别市场趋势,优化产品策略,并提出针对性的营销策略建议。报告涵盖数据预处理、财务分析、产品分析、市场分析和客户分析五个部分。 数据预处理 本模块旨在对电商订单数据进行预处理,以确保数据的质量和一致性,为后续的分析工作打下坚实的基础。预处理步骤包括数据验证、日期格式处理、缺失值处理、异常值处理、数据标准化以及时间特征的添加。 相关代码: def preprocess_data(data):     # 添加数据验证     assert 'Order Date' in data.columns, "缺少订单日期列"     assert 'Total Amount' in data.columns, "缺少总金额列"     # 处理日期格式     data['Order Date'] = pd.to_datetime(data['Order Date'])     # 处理缺失值     data.fillna({'Shipping Status': '未知

2024-12-02

python 大数据分析 招聘历史数据集

采集了多年来各大平台各个时间段多行业多岗位的就业数据

2025-02-02

windows计划任务python脚本调度器工具

## 计划任务调度器工具介绍 **概述:** 计划任务调度器是一款功能强大且易于使用的工具,旨在帮助用户自动化重复性任务。通过该工具,用户可以轻松设置和管理计划任务,例如定时执行脚本、备份数据或发送电子邮件等。 **主要功能:** * **任务设置:** * **脚本文件选择:** 用户可以选择需要执行的脚本文件。 * **任务类型:** 支持多种任务类型,包括每天、每周、每月或自定义间隔执行。 * **执行时间:** 用户可以指定任务的具体执行时间。 * **自定义间隔:** 对于需要频繁执行的任务,用户可以设置自定义间隔时间(以秒为单位)。 * **任务管理:** * **添加任务:** 用户可以添加新的计划任务。 * **启动/停止任务:** 用户可以随时启动或停止已添加的任务。 * **导出日志:** 工具提供日志导出功能,方便用户查看任务执行情况。 * **任务监控:** * **任务名称:** 显示所有已添加任务的名称。 * **执行时间:** 显示每个任务的最近执行时间。

2025-01-15

python打包工具-windows一键打包运行

Python打包工具,支持将Python脚本打包成独立的可执行文件

2025-01-15

python安装包!!快速下载!!!

python安装包!!快速下载!!!

2024-12-02

游览器插件!快速便捷!!助理数据采集

游览器插件

2024-12-02

大厂面试必备-深入剖析Java基础之面向对象特性

内容概要:本文深入讲解了Java基础中的面向对象特性,包括封装、继承、多态、抽象等四个核心特性。每个特性都有详细的理论解释和示例代码,帮助读者理解和应用这些概念。此外,文章还比较了Java和C++的主要区别,介绍了final、finally和finalize的区别,重载与重写的区别,反射机制,以及Java的泛型机制及其实现原理。最后,文章详细阐述了Java中值传递与引用传递的区别。 适合人群:初级和中级Java开发者,准备大厂面试的技术人员。 使用场景及目标:① 深入理解Java面向对象的核心特性,提升编程能力和代码质量;② 掌握Java与C++的主要区别,选择合适的语言进行开发;③ 区分final、finally和finalize的作用,理解重载与重写的区别,熟练运用反射和泛型机制;④ 清楚理解Java中值传递与引用传递的差别。 其他说明:本文内容丰富,涵盖多个知识点,建议读者逐个章节学习,结合示例代码实践,以达到更好的学习效果。

2024-11-27

Java开发腾讯面试重点解析-关键字与语法

内容概要:本文详细解析了 Java 开发中常见的面试题,涵盖了 static 关键字、transient 和 volatile 关键字以及 synchronized 的原理和应用。针对每个关键字,文章不仅介绍了其基本概念,还通过具体代码示例进行了详细说明,包括静态变量、静态方法和静态代码块的使用场景,以及 volatile 保证多线程可见性的机制。最后,讨论了 memory leak(内存泄漏)的原因和解决方法,以及如何实现一个不可变类。 适合人群:具备一定 Java 编程基础的开发人员,尤其是准备腾讯或其他大型互联网公司面试的技术人员。 使用场景及目标:帮助求职者更好地理解和掌握 Java 中重要关键字和机制,提高面试成功率。同时也适用于已经在职但希望巩固基础和优化代码质量的 Java 开发者。 其他说明:本文内容丰富且实用,既有理论讲解也有代码实战,建议读者在阅读过程中动手实践,以便更好地理解和掌握知识点。

2024-11-27

咸鱼关键词多价格采集数据

用于从二手电商平台(如闲鱼)上自动采集商品数据的工具。它能通过输入关键词、设置价格区间等参数,快速获取指定商品的相关信息。这类工具常用于市场分析、价格趋势研究或辅助电商运营。

2024-11-27

在虚拟机中模拟DDoS攻击,并配置相应防御策略 考试题目如下: 模拟SYN 洪水攻击及防御,模拟Smurf攻击及防御,模拟do

一、实验背景目的及原理 1. 模拟SYN洪水攻击及防御 实验背景: SYN洪水攻击(SYN Flood)是一种广为人知的拒绝服务(DoS)攻击,其利用TCP协议的三次握手过程中的缺陷。在正常的TCP连接建立过程中,客户端发送一个SYN报文给服务器端,服务器回应SYN+ACK报文,然后客户端再发送ACK报文进行确认,三次握手完成后连接建立。然而,如果客户端发送大量SYN报文却不回应服务器的SYN+ACK报文,服务器会为了这些未完成的连接不断分配资源,最终耗尽资源而无法处理正常的客户端连接请求。 实验目的: 模拟SYN洪水攻击,通过发送大量伪造的TCP连接请求(SYN报文)来消耗目标系统的资源。 测试和验证防御措施的有效性,如修改TCP连接参数(如tcp_synack_retries和tcp_syncookies)、使用防火墙和入侵检测系统(IDS)等。 实验原理: SYN洪水攻击的原理在于利用TCP协议三次握手机制的缺陷。攻击者通过伪造IP地址和端口号,向目标服务器发送大量SYN请求报文,但不响应服务器的SYN+ACK报文。服务器在等待客户端的ACK报文时,会保持这些未完成的连接状态,并

2024-10-18

【STM32单片机】贪吃蛇游戏设计

【STM32单片机】贪吃蛇游戏设计 本项目支持STM32F103/STM32F407控制器,使用TFTLCD触摸屏、按键、LED等。 项目功能:系统运行后,TFTLCD触摸屏显示游戏界面,通过按键任意键进入游戏界面,然后通过按键KEY_UP、KEY1、KEY2和KEY0键控住上下左右方向。每当蛇吃到3个食物,速度就会提升一个等级,并且显示得分和等级,最高位5级。当游戏结束后可按任意键重新回到主界面开始。

2023-12-13

自动化文件夹脚本程序,批量创建文件夹

当你需要在计算机上批量创建文件夹时,可以使用脚本来自动化这个过程。下面是一个简单的Python脚本示例,它能够根据指定的文件夹名和数量,批量创建文件夹。

2023-12-13

百度热搜数据集2022.8-2025.6

百度热搜数据集2022.8-2025.6

2025-07-16

抖音热搜历史数据集-2023.3-2025.6年热搜数据集

抖音热搜历史数据集-2023.3-2025.6年热搜数据集; 字段:标题、在榜时间、在榜时长、排名、链接

2025-07-15

微博历史-热搜数据集:数据从2021年6月14到2025年6-30日数据集整合

微博热搜历史数据集:数据从2021年6月14到2025年6-30日数据集整合;字段:标题、最后在热榜时间、持续在榜时长、最高排名、热度、采集时间、更新时间

2025-07-14

微博评论爬虫-接口采集非自动化

微博评论爬虫-接口采集非自动化

2025-07-06

京东商品采集、店铺采集、评价采集-网站可视化;资源内存储爬虫、数据库数据、前后端完整内容

京东商品采集、店铺采集、评价采集-网站可视化 详情见博文:https://niuma.blog.csdn.net/article/details/148825464?spm=1011.2415.3001.5331

2025-06-22

使用Python打造强大的词云图生成器:从TXT到可视化的数据之旅

使用Python打造强大的词云图生成器:从TXT到可视化的数据之旅;工具介绍博客:https://blog.csdn.net/weixin_55010563/article/details/148580833?

2025-06-11

游览器切换代理saoshen插件

游览器切换代理saoshen插件

2025-06-10

中国高校数据采集与可视化分析系统

中国高校数据采集与可视化分析系统

2025-06-09

家政服务系统-springboot+vue

家政服务系统-springboot+vue

2025-05-24

https://hbba.sacinfo.org.cn/stdList-行业标准信息服务平台-数据集

行业标准信息服务平台-数据集-https://hbba.sacinfo.org.cn/stdList 字段:标准号 发布日期 实施日期 制修订 代替标准 中国标准分类号 国际标准分类号 技术归口 批准发布部门 行业分类 标准类别 标准名称 备案号 备案日期 起草单位 起草人

2025-05-21

一起上岸研友网站设计与实现

一起上岸研友网站设计与实现

2025-05-21

基于Django框架的高校实验室管理系统设计与实现-毕业设计

高校实验室管理系统是一个基于Django框架开发的综合性平台,旨在提升实验室管理效率,优化资源配置,并简化预约流程。系统包含用户管理、实验室资源管理、预约管理、设备管理、数据统计与分析、通知与消息系统等六大功能模块,支持多角色用户系统,包括管理员、教师、学生和实验室管理员。技术架构采用HTML5/CSS3/JavaScript、Bootstrap、jQuery/AJAX等前端技术,以及Django框架、PostgreSQL/MySQL数据库等后端技术。系统特色包括响应式设计、权限精细控制、智能冲突检测、数据可视化和扩展性强。预期成果包括资源利用率提高30%以上,预约流程时间缩短50%,设备维护响应时间缩短40%,管理成本降低25%。该系统将为高校实验室管理提供现代化、智能化的解决方案,促进实验室资源的合理配置和高效利用。

2025-05-15

基于springboot的教师日程管理系统

**基于SpringBoot的教师日程管理系统** 本系统是一款专为高校教师设计的智能化日程管理平台,基于SpringBoot框架开发,整合Spring Security、JPA、Redis等技术,提供高效、安全的日程管理解决方案。系统支持教学计划安排、会议管理、科研任务跟踪及个人事务提醒,帮助教师优化时间分配,提升工作效率。 **核心功能** 1. 日程管理:支持创建、编辑、分类(教学/会议/科研/个人)日程,提供智能冲突检测和多方式提醒(系统通知/邮件)。 2. 教学管理:课程表维护、教室预约、教学进度跟踪,避免时间冲突。 3. 会议协作:会议创建、邀请、签到管理,支持会议室预约和纪要共享。 4. 数据分析:可视化统计日程分布、活动占比,辅助教师优化时间管理。 5. 共享与协作:支持个人、院系或全校日程共享,促进团队协作。 **技术优势** • 前后端分离:前端采用Bootstrap+Thymeleaf,后端基于SpringBoot,确保高性能与可扩展性。 • 安全可靠:Spring Security实现权限控制,Redis缓存提升响应速度,Quartz定时任务保障提醒精准送达。 • 多端适配:响应式设计,兼容PC和移动端,数据实时同步。 本系统助力教师高效管理时间,平衡教学、科研与生活,是现代化高校管理的理想工具。

2025-05-13

Python+Flask+MySQL膳食健康管理系统设计与实现(附完整源码+数据库)

知识领域:计算机科学/健康营养信息学 技术关键词:Python 3.8+, Flask 2.0, MySQL 8.0, Pandas, Matplotlib, scikit-learn 内容关键词:膳食分析系统、营养计算算法、健康数据可视化、个性化饮食推荐 用途: 1. 计算机专业毕业设计参考项目 2. 健康管理类应用开发实战案例 3. 营养学与信息技术交叉学科研究素材 4. Python全栈开发学习项目

2025-05-13

PyQt5(GUI框架)、Folium(地图可视化)

技术关键词:PyQt5(GUI框架)、Folium(地图可视化)、NetworkX(图算法)、QWebEngineView(网页渲染) 内容关键词:景点数据库、交互式地图、路线规划算法、用户界面设计 用途:帮助游客规划最优旅游路线,可视化展示景点分布,计算景点间最短路径,提升旅游体验效率 1. 使用PyQt5构建直观的用户界面 2. 集成Folium地图实现景点可视化 3. 基于NetworkX实现Dijkstra等路径规划算法 4. 提供景点搜索、路线规划、时间估算等功能 5. 支持交互式地图操作和路线展示

2025-05-13

咸鱼采集-支持首图预览-发起对话

咸鱼采集-支持首图预览-发起对话

2025-05-08

基于python的新能源汽车推荐及数据分析系统完整源码

基于Python的新能源汽车推荐及数据分析系统 系统概述本系统是一个基于Python技术栈开发的新能源汽车智能推荐与数据分析平台,旨在帮助消费者根据个人需求筛选合适的新能源汽车,同时为行业从业者提供市场趋势分析和决策支持。 核心功能 1. 智能推荐引擎 • 多维度筛选:支持按价格区间、续航里程、品牌偏好等条件筛选 • 混合推荐算法:结合协同过滤与内容相似性推荐 • 个性化排序:根据用户历史行为动态调整推荐权重 2. 深度数据分析 • 市场趋势分析:销量走势、价格分布、品牌占有率 • 技术参数对比:电池性能、充电效率、动力系统 • 用户评价分析:情感分析、关键词提取、评分分布 3. 可视化展示 • 交互式仪表盘:动态图表展示核心指标 • 车辆对比工具:雷达图/柱状图多维度对比 • 地理热力图:区域销量和政策可视化 技术架构 1. 技术栈 • 后端:Python + Flask/FastAPI • 前端:HTML5 + JavaScript + Dash/Plotly • 数据库:MySQL/MongoDB + Redis缓存 • 数据分析:Pandas + NumPy + SciPy • 机器学习:Scikit-learn + TensorFlow(可选) 2. 系统架构 ``` 用户层 → API网关 → 业务服务层 → 数据服务层 → 数据存储层 ↑ 缓存层(Redis) ``` 1. 数据采集:通过API/爬虫获取车辆数据 2. 数据清洗:处理缺失值、标准化格式 3. 数据存储:结构化存储到数据库 4. 数据分析:执行统计分析/机器学习 5. 结果展示:通过可视化组件呈现

2025-04-23

本文介绍使用Python+DrissionPage开发的BOSS直聘职位信息自动化采集系统 该系统可实现:自动登录企业账号关键词搜索职位滚动加载全量数据自动化数据存储反爬机制规避

BOSS直聘职位信息自动化采集系统设计与实现 一、项目背景 本文介绍使用Python+DrissionPage开发的BOSS直聘职位信息自动化采集系统。该系统可实现: 1. 自动登录企业账号 2. 关键词搜索职位 3. 滚动加载全量数据 4. 自动化数据存储 5. 反爬机制规避 ![BOSS直聘数据采集架构图](https://example.com/architecture.png) 二、环境准备 依赖库安装 ```bash pip install DrissionPage DataRecorder requests openpyxl ``` 环境要求 1. Chrome浏览器(版本与chromedriver匹配) 2. 配置ChromeDriver路径 3. 企业账号权限(需实名认证) 三、核心代码解析 1. 初始化配置 ```python page = WebPage('d') # 使用无头模式 recorder = Recorder(f'{keyword}.xlsx', cache_size=10) # 初始化数据记录器 ``` • `WebPage('d')`:启用无头浏览器模式 • `Recorder`:配置Excel存储引擎,设置10条缓存 2. 登录模块 ```python def login(): page.get('https://www.zhipin.com/nanjing/?ka=query_select_city_101190100') input('登录后回车......') ``` • 自动跳转到城市选择页面 • 手动扫码登录机制(应对滑动验证码) 3. 核心采集逻辑 ```python def spider(): link = f'https

2025-04-25

yolo的算法模型的人群计数系统

yolo的算法模型的人群计数系统

2025-04-22

该系统旨在利用协同过滤算法为用户提供个性化的体育商品推荐,提高用户购物体验和商家销售转化率

**基于协同过滤算法的体育商品推荐系统** **详细需求分析文档** --- **1. 引言** **1.1 目的** 本需求分析文档旨在详细描述基于协同过滤算法的体育商品推荐系统的功能、性能、数据及安全需求,为系统设计、开发和测试提供依据。 **1.2 适用范围** • 适用于电商平台、体育用品商城等需要个性化推荐功能的系统。 • 适用于产品经理、开发团队、测试团队及业务方。 **1.3 术语定义** | 术语 | 定义 | |------|------| | 协同过滤(CF) | 基于用户历史行为(如评分、购买、浏览)计算用户或商品相似度,进行个性化推荐。 | | 用户相似度 | 衡量不同用户偏好的相似程度,用于基于用户的协同过滤(User-based CF)。 | | 商品相似度 | 衡量不同商品被同一用户偏好的相似程度,用于基于商品的协同过滤(Item-based CF)。 | | 冷启动问题 | 新用户或新商品因缺乏历史数据而难以推荐的问题。 | | Top-N推荐 | 系统向用户推荐最可能感兴趣的N个商品。 | --- **2. 系统功能需求** **2.1 用户管理模块** | 功能 | 详细描述 | |------|---------| | 用户注册/登录 | 支持邮箱、手机号、第三方账号(微信、Google)登录。 | | 用户画像 | 记录用户基本信息(性别、年龄、运动偏好)。 | | 行为数据采集 | 记录用户浏览、收藏、购买、评分等行为,用于推荐计算。 | | 偏好设置(可选) | 允许用户手动调整推荐偏好(如“更喜欢篮球类商品”)。 | **2.2 商品管理模块** | 功能 | 详细描述 | |------|---------

2025-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除