好久不见的拉格朗日乘数法

本文通过一个引例详细解释了拉格朗日乘数法在求解条件极值问题中的应用。首先,介绍了拉格朗日乘数法的基本思想和条件极值的概念。接着,通过一元函数极值的必要条件推导出拉格朗日乘数法的原理。最后,阐述了使用该方法解决多元函数条件极值问题的步骤。拉格朗日乘数法是一种将约束条件转化为无约束问题的工具,对于求解数学优化问题非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 引例

我想大多数人对于朗格朗日乘数法的学习已经是好多年前的事情,其中的细节也自然是慢慢模糊了起来,但是对于它的作用我想几乎是不会忘记的,那就是用来求解条件极值。既然大多数人的记忆都停留在这个地方,那么我们就从这个开始重新拾起拉格朗日乘数法。下面就以一个例题来重温一下求解过程:

求解目标函数z=xyz=xyz=xy在约束条件下x+y=1x+y=1x+y=1的条件极值。

解:作拉格朗日函数
F(x,y,λ)=xy+λ(x+y−1)(1) F(x,y,\lambda)=xy+\lambda(x+y-1)\tag 1 F(x,y,λ)=xy+λ(x+y1)(1)
由式子(1)(1)(1)可得FFF的驻点:
Fx=y+λ=0Fy=x+λ=0Fλ=x+y−1=0(2) \begin{aligned} F_x&=y+\lambda=0\\ F_y&=x+\lambda=0\\ F_{\lambda}&=x+y-1=0 \end{aligned}\tag 2 FxFyFλ=y+λ=0=x+λ=0=x+y1=0(2)
解方程组(2)(2)(2)便可以求得x,y,λx,y,\lambdax,y,λ
  ⟹  x=12;y=12;λ=−12 \implies x=\frac{1}{2};y=\frac{1}{2};\lambda=-\frac{1}{2} x=21;y=21;λ=21
由此我们便可以知道,目标函数z=xyz=xyz=xy在约束条件下x+y=1x+y=1x+y=1的条件极值为z=12∗12=14z=\frac{1}{2}\ast\frac{1}{2}=\frac{1}{4}z=2121=41。那为什么可以通过这样的方法来求得条件极值呢?

2 什么是拉格朗日乘数法

在数学优化问题中,拉格朗日乘数法(Lagrange multipliers )是一种用于求解等式约束条件下局部最小(最大)值的策略。它的基本思想是通过将含约束条件的优化问题转化为无约束条件下的优化问题,以便于得到各个未知变量的梯度,进而求得极值点[1]。因此,一句话就是拉格朗日乘数法是一种用来求解条件极值的工具。那么什么又是条件极值呢?

2.1 条件极值

所谓条件极值是指,在一定约束条件下(通常为方程)目标函数的极值就称为条件极值。

如图所示,函数z=f(x,y)z=f(x,y)z=f(x,y)在其定义域上的极大值(也是最大值)为z=f(x1,y1)z=f(x_1,y_1)z=f(x1,y1);但如果此时对其施加一个约束条件φ(x,y)=0\varphi(x,y)=0φ(x,y)=0,那这就等价的告诉函数z=f(x,y)z=f(x,y)z=f(x,y)极值点同时还要满足约束条件。因此,z=f(x,y)z=f(x,y)z=f(x,y)在约束条件φ(x,y)=0\varphi(x,y)=0φ(x,y)=0下的极值点只能在(x0,y0)(x_0,y_0)(x0,y0)处获得(因为此时的φ(x0,y0)=0\varphi(x_0,y_0)=0φ(x0,y0)=0,而φ(x1,y1)≠0\varphi(x_1,y_1)\neq0φ(x1,y1)=0即不满足约束条件)。现在我们已经对条件极值有了一个直观上的理解,那么接下来要探究的就是怎么才能找到这个极值。

2.2 如何求解条件极值

我们知道在一元函数f(x)f(x)f(x)中可以利用极值的必要条件来求解f(x)f(x)f(x)的极值。一元函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值