如何用聚类的思想做分类(预测)

使用聚类进行分类预测需要训练集带有正确标签。方法包括直接计算类别簇中心点或通过迭代Kmeans算法。通过比较样本与簇中心点的距离来确定分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刚组里有人让我用聚类来做个预测。你一反应是,what?你确定你没说错?这玩意儿这么分类预测。经过一番点播,才明白过来。

用聚类的思想来做分类预测需要一个前提,那就是训练集得有正确的标签。

思路1:

第一步:根据训练集和标签,直接计算每个类别的簇中心点;
第二步:遍历所有的测试样本,一次计算每个样本到所有中心点的距离,选择距离最小的簇所对应的类标签即可。

代码:

def Compute_Center_Each_Class(x_train,y_train,batch_size):
    now=datetime.datetime.now()
    print("Compute center of each class begin: ",now)
    # x_train = x_train.toarray() # 如果是稀疏矩阵,加上这句
    classes = np.unique(y_train)# 统计类(簇)数
    class_center = np.zeros([len(classes),x_train.shape[1]])
    times = int(x_train.shape[0]/batch_size) + 1 
    # times 计算计算完所有样本需要迭代的轮数
    for k in range(times):# 这里通过mini_batch来分批计算
        begin = k * batch_size
        end = begin + batch_size
        if end >= x_train.shape[0]:
            end = x_train.shape[0]
        batch_x = x_train[begin:end]
        batch_y = y_train[begin:end]
        batch_classes = np.unique(batch_y)# 一个batch 中的
        for i in batch_classes:
            index = np.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值