AI Agents 技术路线图详解

一、引言

随着人工智能技术的快速发展,AI Agents(智能代理)逐渐成为研究和应用的热点。AI Agents 是一种能够自主感知环境、进行推理决策并执行任务的智能系统。本文将基于一张详细的AI Agents技术路线图,深入分析其各个组成部分和学习路径,帮助读者全面理解构建和应用AI Agents所需的知识和技术。


二、技术路线图概览

2.1 相关路线图

在开始学习AI Agents之前,可以参考以下相关路线图:

  • AI Engineer Roadmap:面向AI工程师的技术路线。
  • AI and Data Scientist Roadmap:面向AI与数据科学家的技术路线。
  • MLOps Roadmap:面向机器学习运维的技术路线。
  • AI Red Teaming Roadmap:面向AI红队测试的技术路线。
  • Prompt Engineering Roadmap:面向提示工程的技术路线。

这些路线图提供了不同领域的知识体系和技能要求,有助于读者根据自身背景和兴趣选择合适的学习路径。


三、学习前置条件

在深入学习AI Agents之前,需要掌握一些基础技能:

3.1 基础后端开发

  • Git和终端使用:熟悉版本控制工具Git和命令行操作。
  • REST API知识:了解RESTful API的设计原则和实现方法。

3.2 大型语言模型(LLM)基础知识

  • Transformer Models and LLMs:理解Transformer模型的工作机制、上下文窗口、基于Token的定价等概念。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值