一、引言
随着人工智能技术的快速发展,AI Agents(智能代理)逐渐成为研究和应用的热点。AI Agents 是一种能够自主感知环境、进行推理决策并执行任务的智能系统。本文将基于一张详细的AI Agents技术路线图,深入分析其各个组成部分和学习路径,帮助读者全面理解构建和应用AI Agents所需的知识和技术。
二、技术路线图概览
2.1 相关路线图
在开始学习AI Agents之前,可以参考以下相关路线图:
- AI Engineer Roadmap:面向AI工程师的技术路线。
- AI and Data Scientist Roadmap:面向AI与数据科学家的技术路线。
- MLOps Roadmap:面向机器学习运维的技术路线。
- AI Red Teaming Roadmap:面向AI红队测试的技术路线。
- Prompt Engineering Roadmap:面向提示工程的技术路线。
这些路线图提供了不同领域的知识体系和技能要求,有助于读者根据自身背景和兴趣选择合适的学习路径。
三、学习前置条件
在深入学习AI Agents之前,需要掌握一些基础技能:
3.1 基础后端开发
- Git和终端使用:熟悉版本控制工具Git和命令行操作。
- REST API知识:了解RESTful API的设计原则和实现方法。
3.2 大型语言模型(LLM)基础知识
- Transformer Models and LLMs:理解Transformer模型的工作机制、上下文窗口、基于Token的定价等概念。 <