SlideShare uma empresa Scribd logo
2
Mais lidos
CONJUNTOS NUMÉRICOS
CN.7.01.A
1) Defina os conjuntos:
ℕ = {0,1,2, … , 𝑛, 𝑛 + 1, … } -
Conjunto dos Números
Naturais
ℤ = {… , −3, −2, −1,0,1,2, … } -
Conjunto dos Números
Racionais
ℚ = {
𝑝
𝑞
; 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0} -
Conjunto dos Números
Racionais
2) Dado diagrama, coloque
nos lugares corretos os
números
3) Escreva o nome e defina:
ℕ ∗= {𝑥 ∈ ℕ; 𝑥 ≠ 0}
Nome: Conjunto dos
Números Naturais Não Nulos
ℤ ∗= {𝑥 ∈ ℤ; 𝑥 ≠ 0}
Nome: Conjunto dos
Números Inteiros Não Nulos
ℤ+={𝑥 ∈ ℤ; 𝑥 ≥ 0}
Nome: Conjunto dos
Números Inteiros Não
Negativos
ℤ−={𝑥 ∈ ℤ; 𝑥 ≤ 0}
Nome: Conjunto dos
Números Inteiros Não
Positivos
ℤ+
∗
={𝑥 ∈ ℤ; 𝑥 > 0}
Nome: Conjunto dos
Números Inteiros Positivos
ℤ−
∗
={𝑥 ∈ ℤ; 𝑥 < 0}
Nome: Conjunto dos
Números Inteiros Negativos
CONJUNTOS NUMÉRICOS
CN.7.01.B
ℚ ∗={𝑥 ∈ ℚ; 𝑥 ≠ 0}
Nome: Conjunto dos
Números Racionais Não
Nulos
ℚ+={𝑥 ∈ ℚ; 𝑥 ≥ 0}
Nome: Conjunto dos
Números Racionais Não
Negativos
ℚ−={𝑥 ∈ ℚ; 𝑥 ≤ 0}
Nome: Conjunto dos
Números Racionais Não
Positivos
ℚ+
∗
={𝑥 ∈ ℚ; 𝑥 > 0}
Nome: Conjunto dos
Números RacionaisPositivos
ℚ−
∗
={𝑥 ∈ ℚ; 𝑥 < 0}
Nome: Conjunto dos
Números Racionais
Negativos
4) Pode-se dizer que A*=A-
{0}. Dado isso, seℙ é o
conjunto dos números pares,
o que seria ℙ*?
O conjunto dos Pares menos
o zero, ou seja, {2,4,6,8,...,
2n, 2n+2, ...}
5) Complete com ∈ ou ∉:
0 ∈ ℕ 0 ∈ ℤ 0∈ ℚ
5 ∈ ℕ 5∈ ℤ 5∈ ℚ
-2 ∉ ℕ -2∈ ℤ -2∈ ℚ
0,3 ∉ ℕ 0,3∉ ℤ 0,3∈ ℚ
2/3 ∉ ℕ 2/3∉ ℤ 2/3∈ ℚ
-0,5 ∉ ℕ -0,5∉ ℤ 0,5∈ ℚ
-1/5 ∉ ℕ -1/5∉ ℤ -1/5∈ ℚ
0,333....∉ ℕ 0,333....∉ ℤ
0,333...∈ ℚ
6) Escreva os números em
seus locais nos diagramas
de Venn:
1
2
3
deve entrar no terceiro
círculo. Nenhum dos
elementos ficará no último
círculo (não aprendemos
ainda os números reais)
CONJUNTOS NUMÉRICOS
CN.7.01.C
1) Complete com ⊂ (contém)
ou ⊄ (não contém):
ℕ ⊂ ℤ ℕ ⊂ ℚ ℤ ⊄ ℕ
ℤ ⊂ ℚ ℚ ⊄ ℕ ℚ ⊄ ℤ
A relação de pertinência
existe quando relacionamos
ELEMENTO e CONJUNTO.
Podemos dizer então que:
5∈{0,1,2,3,4,5} e 2/3 ∈ ℚ
enquanto
7∉{0,1,2,3,4,5} e 2/3 ∉ ℤ
Já a relação de pertinência
existe quando relacionamos
CONJUNTO e CONJUNTO,
nesse caso dizemos que
está contido e não está
contido
{1,2}⊂{0,1,2,3,4}
{1,5}⊄{0,1,2,3,4}
Um conjunto está contido no
outro quando TODOS os
seus elementos pertencem
ao outro.
8) Determine a união e
intersecção entre os
conjuntos dos números
naturais, inteiros e racionais.
ℕ ∪ ℤ = ℤ ℕ ∪ ℚ = ℚ
ℤ ∪ ℚ = ℚ ℕ ∩ ℤ = ℕ
ℕ ∩ ℚ = ℕ ℤ ∩ ℚ = ℤ
9) Escreva 4 relações de
inclusão entre conjuntos
não-negativos, não-positivos,
negativos, positivos e não-
nulos envolvendo quaisquer
conjuntos.
ℤ+= ℕ ℤ−
∗
⊂ ℚ−
∗
ℤ−
∗
⊂ ℤ+
ℕ ∗=ℤ+
∗
Existem outras
10) Pesquise as
propriedades e as escreva
(com ajuda do professor):
Considere a, b, c números
racionais.
Propriedades da Adição
Nome Sent;
COMUTATIVA a+b=b+a
ASSOCIATIVA (a+b)+c=a+(b+c)
ELEMENTO
NEUTRO
a+0=0+a=a
ELEMENTO
OPOSTO
a+(-a)=0
FECHAMENTO a+b∈ ℚ
CANCEL.
ADITIVO
Se a+c+b+c
então a=b
Propriedades da
Multiplicação
Nome Sent.
COMUTATIVA ab=ba
ASSOCIATIVA (ab)c=a(bc)
ELEMENTO
NEUTRO
a.1=1.a=a
DISTRIBUTIVA
EM RELAÇÃO À
ADIÇÃO
a(b+c)=ab+ac
(a+b)c=ac+bc
ELEMENTO
INVERSO
a.(1/a)=1
OBS:
a≠0
FECHAMENTO ab∈ ℚ
CANCELAMENTO
MULTIPLICATIVO
Se ac=bc
então a=b
OBS:
a≠0
CONJUNTOS NUMÉRICOS
CN.7.01.D
1) Localize na reta:
a) A= ½ b) B=1/3 c) C=5/6
d) D=2/5 e) E=3/4
2) Localize na reta:
a) A=-1/2 b) B=-2/3 c) C=-5/8
Pela dificuldade de edição e
falta de aplicativo apropriado,
pedimos que procure o
professor para resolução dos
exercícios 2 e 3
3) Localize na reta:
a) A=
4
1
2
b)
3
2
1B
c)
4
1
2C
d)
5
1
1D
e)
5
2
E
f) 3G
4. Ache o módulo, o inverso e
o oposto de:
a) 2/3 módulo 2/3
inverso 3/2
oposto -2/3
b) 3/5 módulo 3/5
inverso 5/3
oposto -3/5
c) 1/4 módulo ¼
inverso 4
oposto -1/4
d) 4 módulo 4
inverso ¼
oposto -4
e) -2 módulo 2
inverso -1/2
oposto 2
f) -2/3 módulo 2/3
inverso -3/2
oposto 2/3
5.Ache o inverso de
4
1
2
.
2
1
4
=
9
4
, logo o inverso é 4/9
6. Ache o oposto do inverso de
-3/4. Resposta: 4/3
7) Ache a metade do triplo do
inverso de
6
1 .
Inverso – 6
Triplo do inverso – 18
Metade disso – 9
8. (Concurso Professor de
Matemática 5ª à 8ª séries –
Prefeitura Municipal de
Orlândia-SP/2003) A figura
mostra um trecho da reta
numérica:
Os pontos P e Q, indicados
pelas setas, podem
corresponder,
respectivamente, aos
números:
e) -1,64 e -1,515
9. (Avaliação do SAEB – 4ª
série – 2001) A reta
numerada, o ponto A
representa o número
c) 7,5
CONJUNTOS NUMÉRICOS
CN.7.01.E
10. (Avaliação do SAEB – 4ª
série – 2001) O número
decimal correspondente ao
ponto assinalado na reta
numérica é
c) 2,3
11. (Concurso Professor de
Matemática 5ª à 8ª séries e
Ensino Médio– SESI-
SP/2002) Na figura abaixo
estão representados
geometricamente os números
reais –1, y, 0, x e 1.
Com base nessa
representação, é possível
concluir que o produto x.y
está localizado
y é negativo e menor que 1
x está entre 0 e 1
Ignorando o sinal x . y é um
número menor que y, mas xy
é negativo, então estão entre y
e 0.
Veja um exemplo y=-1,3 e
x=0,5, então xy=-0,65
c) entre y e 0
12. (Concurso de Fiscal de
Serviços Públicos –
Prefeitura Municipal de São
Carlos / 2002) Observe a
figura abaixo. Os números
indicados pelos pontos A e B
na escala decimal são,
respectivamente,
c) 2,385 e 2,402
13. (Avaliação do SARESP
1998 – 5ª série - Diurno)
Examine a figura:
O ponto A corresponde a um
dos números abaixo. A qual
deles?
Não há gabarito, o A deve ser
próximo de 2,4
CONJUNTOS NUMÉRICOS
CN.7.01.F
14. (SIMAVE – 4ª série – 2002)
Roberto está com febre. Veja a
ilustração do termômetro que
marca a temperatura dele:
O termômetro está marcando:
B) 39,3º C
15. (ENCCEJA – Ensino
Fundamental – 2002) Uma
estrada está sinalizada com
marcadores de quilometragem
que guardam entre si a mesma
distância. Um carro X está na
posição 150 e um carro Y, na
posição 310. Um carro Z está entre
X e Y, conforme a figura abaixo.
Dentre as alternativas, assinale a
que melhor expressa, em
quilômetros, a localização do carro
Z.
(D) 270.
16. (Concurso Público para
Professor de 5ª à 8ª série –
Prefeitura Municipal de
Araçatuba – SP/2000) Com 3
cartões numerados de 1 a 3, e um
cartão marcado com uma vírgula,
podemos representar, por
exemplo, o no decimal 1,23. O
maior número e o menor número,
expressos na notação decimal, que
podemos representar com os
quatro cartões são,
respectivamente:
c) 32,1 e 1,23
17.(Avaliação do SARESP 2000 –
5ª série - Diurno) Das
comparações abaixo, qual é
verdadeira?
d) 2>1,9
18. (Concurso Público para
Professor de 1ª à 4ª série –
Prefeitura Cidade do Rio de
Janeiro/2001?) Com 3 cartões
numerados de 1 a 3, e um quarto
cartão com uma vírgula, podemos
representar, por exemplo, o no
decimal 1,23. Quantos números
decimais podemos representar
com os quatro cartões?
d) 12
Ignorando a vírgula temos
3x2x1=6 possibilidades. A vírgula
pode ser colocada em 2 posições,
ou seja 6x2=12, números.
Listando: 1,23 12,3
1,32 13,2
2,13 21,3
2,31 23,1
3,12 31,2
3,21 32,1
CONJUNTOS NUMÉRICOS
CN.7.01.G
19. (ENCCEJA – Ensino
Fundamental – 2002) Uma
agência de modelos está
selecionando jovens para uma
propaganda de sorvetes. Entre as
exigências, a agência solicita que
os jovens tenham altura mínima
de 1,65 m e máxima de 1,78 m. Se
x é um número racional que
representa a altura, em metros, de
um jovem que pode ser escolhido
para essa propaganda, é correto
afirmar que
(C) 1,65 x 1,78
(D) 1,65 x 1,78
Veja que as respostas estão iguais
(erro meu)
20. (Avaliação do SARESP 1998
– 5ª série - Diurno) Célia fez
regime e anotou seu progresso
numa tabela:
Semana Perda em Quilogramas
1ª 2,45
2ª 1,3
3ª 2,54
4ª 1,03
Em qual semana Célia perdeu
menos peso?
d) 4ª
21. (Avaliação do SAEB – 4ª
série – 2001) Qual é o maior dos
números abaixo:
d) 0,8
22. (Concurso para o Magistério
do Estado e Município do Rio de
Janeiro – 1988) Se x e y são
números reais tais que
3,23<x<5,01 e 2,81<y<4,54, então,
sobre a diferença x-y, pode-se
afirmar que:
a) -1,31<x-y<2,20
b) -1,41<x-y<0,73
c) 0,42<x-y<2,50
d) 0,42<x-y<2,73
e) 6,04<x-y<9,55
23. (Concurso do Magistério
Estadual do Rio de Janeiro –
1990) Numa régua graduada, o
segmento cujos extremos são
X=7,13 e Y=8,32 se encontra
dividido em sete partes iguais,
conforme se vê na figura abaixo. O
número decimal Z,
correspondente à terceira divisão
a partir da extremidade X, é
expresso por:
8,32-7,13=1,19
São 7 segmentos
1,19:7=0,17
3 x 0,17 = 0,51
7,13+0,51 = 7,64
d) 7,64
CONJUNTOS NUMÉRICOS
CN.7.01.H
1) Escreva, usando as três
notações:
a) o intervalo aberto de
extremos -2 e 1.
-2<x<1
]-2,1[
b) o intervalo semi-aberto à
esquerda de extremos 3 e 8.
3<x≤8
]3,8]
c) o intervalo fechado de
extremos 0 e 5.
0≤x≤5
[0,5]
d) o intervalo semi-aberto à
direita de extremos -5 e 1.
-5≤x<1
[-5,1[
2) Usando a notação de
intervalo, escreva:
a) o subconjunto de IR formado
pelos números reais maiores
que 3.
x>3
]3,∞[
b) o subconjunto de IR formado
pelos números reais menores
que -1.
x<-1
]-∞,-1[
c) o subconjunto de IR formado
pelos números reais maiores ou
iguais a 2.
x≥2
[2,∞[
d) o subconjunto de IR formado
pelos números reais menores
ou iguais a ½.
x≤1/2
]- ∞,1/2]
3)Usando a notação de
conjuntos, escreva os
intervalos:
a) [6,10[ 6≤x<10
b) ]-1,5] -1<x≤ 5
c) ]-6,0[ -6<x<0
d) [0,+[ x≥0
e) ]-,3[ x<3
f) [-5,2[ -5≤ 𝑥 < 2
g) ]-10,10[ -10<x<10
h)[- 3 , 3 ] −√3 ≤ 𝑥 ≤ √3
i)]-,1] x≤ 1
Outros exercícios da folha
verificar com o professor.
CONJUNTOS NUMÉRICOS
CN.7.01.I
1) Escreva os conjuntos por
extenso (use adequadamente as
reticências ... )
{𝑥 ∈ ℤ; 3 < 𝑥 < 10}=
{4,5,6,7,8,9}
{𝑥 ∈ ℤ; −2 < 𝑥 < 7}=
{-1,0,1,2,3,4,5,6}
{𝑥 ∈ ℤ ∗; −2 < 𝑥 < 7}=
{-1,1,2,3,4,5,6}
{𝑥 ∈ ℕ; 3 < 𝑥 < 10}=
{4,5,6,7,8,9}
{𝑥 ∈ ℕ; −2 < 𝑥 < 7}=
{0,1,2,3,4,5,6}
{𝑥 ∈ ℕ ∗; −2 < 𝑥 < 7}=
{1,2,3,4,5,6}
{𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}=
{3,4,5,6,7,8,9}
{𝑥 ∈ ℤ; 3 < 𝑥 ≤ 10}=
{4,5,6,7,8,9,10}
{𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}=
{3,4,5,6,7,8,9}
{𝑥 ∈ ℤ; −1 ≤ 𝑥 < 5}=
{-1,0,1,2,3,4}
{𝑥 ∈ ℤ; −3 < 𝑥 ≤ 1}=
{-2,-1,0,1}
{𝑥 ∈ ℤ; −5 ≤ 𝑥 < −3}=
{-5,-4}
{𝑥 ∈ ℕ; 3 < 𝑥 < 4}=
{ }=∅ (nenhum número, não há
números entre 3 e 4)
{𝑥 ∈ ℕ; −5 < 𝑥 < −2}=
{ }=∅ (nenhum número, números
naturais não podem ser negativos)
{𝑥 ∈ ℕ; 5 < 𝑥 < 100}=
{6,7,8,9,...,99,100}
{𝑥 ∈ ℕ; −10 < 𝑥 < 500}=
{-0,1,2,3,....,499,500}
{𝑥 ∈ ℕ; 𝑥 < 10}=
{0,1,2,3,4,5,6,7,8,9}
{𝑥 ∈ ℕ; 𝑥 > 10}=
{11,12,13,14,...}
{𝑥 ∈ ℤ; 𝑥 < 10}=
{...,-2,-1, 0,1,2,3,4,5,6,7,8,9}
{𝑥 ∈ ℤ; 𝑥 > 10}=
{11,12,13,14,...}
{𝑥 ∈ ℤ ∗; 𝑥 > 10}=
{11,12,13,14,...}
{𝑥 ∈ ℤ; 𝑥 ≥ 10}=
{...,-2,-1, 0,1,2,3,4,5,6,7,8,9,10}
2) Complete com ∈ (pertence) e ∉
(não pertence)
-3 ∉ {𝑥 ∈ ℤ; 3 < 𝑥 < 10}
4 ∈ {𝑥 ∈ ℤ; 3 < 𝑥 < 10}
3 ∉ {𝑥 ∈ ℤ; 3 < 𝑥 < 10}
3∈ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}
5,2∉ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}
7/2∉ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}
5,2∈ {𝑥 ∈ ℚ; 3 ≤ 𝑥 < 10}
7/2∈ {𝑥 ∈ ℚ; 3 ≤ 𝑥 < 10}
0,555........ ∈ {𝑥 ∈ ℚ; −5 < 𝑥 < 10}
-1/3∈ {𝑥 ∈ ℚ; −2 < 𝑥 ≤ 3}
5/9∉ {𝑥 ∈ ℚ; 1 ≤ 𝑥 ≤ 2}
9/7∈ {𝑥 ∈ ℚ; 0 ≤ 𝑥 < 1}
1
3
5
∈ {𝑥 ∈ ℚ; 1 < 𝑥 < 2}

Mais conteúdo relacionado

PDF
Exercícios função de 2° grau 2p
PDF
Lista de exercícios equação - 7 ano - 5ª etapa
PDF
Lista 03 1º ano logarítmos
PDF
Miniteste do 8º e 9º ano
PDF
Potenciacao e radiciaçao ( 9º Ano - 1º Bimestre) 2014
PDF
Aula 02 polígonos - exercicios
DOCX
Atividade avaliativa recuperação 7 ano
DOCX
Exercícios de razões trigonométricas
Exercícios função de 2° grau 2p
Lista de exercícios equação - 7 ano - 5ª etapa
Lista 03 1º ano logarítmos
Miniteste do 8º e 9º ano
Potenciacao e radiciaçao ( 9º Ano - 1º Bimestre) 2014
Aula 02 polígonos - exercicios
Atividade avaliativa recuperação 7 ano
Exercícios de razões trigonométricas

Mais procurados (20)

PDF
Lista (6) de exercícios de multiplicação e divisão
PDF
Provas 9º ano
DOC
L ista de exercícios operacoes com monômios
PDF
1ª lista de exercícios 8º ano (numeros reais) ilton bruno
DOC
Lista Circulo Circunferencia
PPTX
Raiz quadrada
PDF
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
PDF
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
DOCX
Lista Resolvida de Números racionais
DOC
22 exercícios - inequação produto e quociente (1)
PDF
8 ano produtos notáveis e ângulos
PDF
1ª lista de exercícios 9º ano(potências)ilton bruno
DOCX
Lista de exercícios - 8° ANO - unidade ii
PDF
Atividades de Matemática - Ensino Fundamental - Anos Finais.pdf
PDF
Lista de exercício com propriedades de radicais
PDF
Mat exercicios equacao do segundo grau parte i
PDF
Lista de exercícios ii 8º ano resolução ii trimestre 2017
DOC
Trigonometria Triangulo Retangulo
PDF
1 exercícios 1º ano
DOC
Lista de exercícios PG
Lista (6) de exercícios de multiplicação e divisão
Provas 9º ano
L ista de exercícios operacoes com monômios
1ª lista de exercícios 8º ano (numeros reais) ilton bruno
Lista Circulo Circunferencia
Raiz quadrada
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Lista Resolvida de Números racionais
22 exercícios - inequação produto e quociente (1)
8 ano produtos notáveis e ângulos
1ª lista de exercícios 9º ano(potências)ilton bruno
Lista de exercícios - 8° ANO - unidade ii
Atividades de Matemática - Ensino Fundamental - Anos Finais.pdf
Lista de exercício com propriedades de radicais
Mat exercicios equacao do segundo grau parte i
Lista de exercícios ii 8º ano resolução ii trimestre 2017
Trigonometria Triangulo Retangulo
1 exercícios 1º ano
Lista de exercícios PG
Anúncio

Destaque (20)

PPSX
8º ano - 1 - Quiz - Conjuntos Numéricos
PPTX
Teoria dos conjuntos 1º ANO - Ensino Médio
DOCX
Exercícios 8º ano - conjunto dos números irracionais e racionais
PDF
Banco de-atividades-de-matematica-7c2ba-ano
PDF
Exercicios e problemas conjuntos final
DOC
1ª prova gab 9ano unid 1 conjuntos numeros 2011
PDF
Exercícios: noções de conjuntos e conjuntos numéricos
PDF
Exercícios teoria dos conjuntos
PPT
Matemática conjuntos
PDF
Exercícios resolvidos de conjuntos
PDF
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
PDF
SIMULADO - NÚMEROS NATURAIS
PDF
Ap mat potenciacao
PDF
Prova do sétimo verdadeiro
PDF
Exercícios adicionais
DOC
Probabilidade
PDF
M4 60 vb
PPTX
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
PDF
Mat sequencias e progressoes 005
PDF
Mat progressao aritmetica ( pa ) ii
8º ano - 1 - Quiz - Conjuntos Numéricos
Teoria dos conjuntos 1º ANO - Ensino Médio
Exercícios 8º ano - conjunto dos números irracionais e racionais
Banco de-atividades-de-matematica-7c2ba-ano
Exercicios e problemas conjuntos final
1ª prova gab 9ano unid 1 conjuntos numeros 2011
Exercícios: noções de conjuntos e conjuntos numéricos
Exercícios teoria dos conjuntos
Matemática conjuntos
Exercícios resolvidos de conjuntos
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
SIMULADO - NÚMEROS NATURAIS
Ap mat potenciacao
Prova do sétimo verdadeiro
Exercícios adicionais
Probabilidade
M4 60 vb
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
Mat sequencias e progressoes 005
Mat progressao aritmetica ( pa ) ii
Anúncio

Semelhante a Conjuntos numéricos gabarito (20)

PDF
Conjuntos numéricos - 7 ano
PDF
Apostilamatconcursos 111209123909-phpapp01
DOCX
Plano de aula 1 º ano ensino medio - 1º bimestre
DOCX
Plano de aula 1 º ano ensino medio - 1º bimestre
DOCX
Teste 5 - funções + geometria analitica + critérios de avaçiação
PDF
Sequencias e mf 2016
PDF
Matematica eletromecanica
PDF
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
PDF
7ºano mat ficha revisões nº4
PDF
m9fnemp_gp.pdf
PDF
8ºano mat correcao teste5 8ano_v1
PDF
M9fnemp gp
PDF
AULASSSSSSSSSSSSSSSSSSSSSSSSSZSSSSSSSSSSSSSSSSSSSSSSSSSS
PDF
Matemática - Tipo C
PPT
Resumo do 7º e 8º ano
PDF
622 apostila01 mb
Conjuntos numéricos - 7 ano
Apostilamatconcursos 111209123909-phpapp01
Plano de aula 1 º ano ensino medio - 1º bimestre
Plano de aula 1 º ano ensino medio - 1º bimestre
Teste 5 - funções + geometria analitica + critérios de avaçiação
Sequencias e mf 2016
Matematica eletromecanica
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
7ºano mat ficha revisões nº4
m9fnemp_gp.pdf
8ºano mat correcao teste5 8ano_v1
M9fnemp gp
AULASSSSSSSSSSSSSSSSSSSSSSSSSZSSSSSSSSSSSSSSSSSSSSSSSSSS
Matemática - Tipo C
Resumo do 7º e 8º ano
622 apostila01 mb

Mais de Otávio Sales (20)

PDF
Apostila do módulo b5 22032020
PDF
ESTATÍSTICA E PROBABILIDADE - REVISÃO DAS AULAS 1, 2, 3
PDF
MATEMÁTICA FINANCEIRA - AULA DE REVISÃO 1, 2, 3
PDF
MATEMÁTICA FINANCEIRA - AULA 3 - TAXAS
PDF
MATEMÁTICA FINANCEIRA - AULA 2 - JUROS COMPOSTOS
PDF
ESTATÍSTICA E PROBABILIDADE - AULA 1
PDF
AULA 1 - MATEMÁTICA FINANCEIRA
PDF
ESTATÍSTICA DESCRITIVA - AULA 1
PDF
ESTATÍSTICA DESCRITIVA - AULA 2
PDF
ESTATÍSTICA DESCRITIVA - AULA 3
PDF
Puzzles Japoneses - Aula 1
PDF
Puzzles Japoneses - Aula 2
PDF
Apostila do módulo b5 textual - corrigido e ampliado - 22032020 (1)
PDF
181 questoes omu 2009 a 2018 - ENSINO FUNDAMENTAL
PDF
Apostila verao 19 passos 1
PDF
Apostila b9 - reduzida
PDF
14 qa introducao aos poliedros - aula 2
PDF
14 qa introducao aos poliedros - aula 1
PDF
13 qa teoria matematica das eleicoes - aula 2 - versao 17052020
PDF
13 qa teoria matematica das eleicoes - aula 1
Apostila do módulo b5 22032020
ESTATÍSTICA E PROBABILIDADE - REVISÃO DAS AULAS 1, 2, 3
MATEMÁTICA FINANCEIRA - AULA DE REVISÃO 1, 2, 3
MATEMÁTICA FINANCEIRA - AULA 3 - TAXAS
MATEMÁTICA FINANCEIRA - AULA 2 - JUROS COMPOSTOS
ESTATÍSTICA E PROBABILIDADE - AULA 1
AULA 1 - MATEMÁTICA FINANCEIRA
ESTATÍSTICA DESCRITIVA - AULA 1
ESTATÍSTICA DESCRITIVA - AULA 2
ESTATÍSTICA DESCRITIVA - AULA 3
Puzzles Japoneses - Aula 1
Puzzles Japoneses - Aula 2
Apostila do módulo b5 textual - corrigido e ampliado - 22032020 (1)
181 questoes omu 2009 a 2018 - ENSINO FUNDAMENTAL
Apostila verao 19 passos 1
Apostila b9 - reduzida
14 qa introducao aos poliedros - aula 2
14 qa introducao aos poliedros - aula 1
13 qa teoria matematica das eleicoes - aula 2 - versao 17052020
13 qa teoria matematica das eleicoes - aula 1

Último (20)

PDF
A provisão de jojuador (ramadã) islamismo
PPTX
Pedagogia em Ambientes Não Escolares.pptx
PPSX
4. A Cultura da Catedral - HistóriaCArtes .ppsx
PDF
Ebook - Matemática_Ensino_Médio_Saeb_V1.pdf
DOC
PPP 2024 (2) (2) feito EM REELABORAÇÃO MORENA ( ABRIL 2024).doc
PPTX
4. A cultura do cinema e as vanguardas.pptx
PPTX
16. MODERNISMO - PRIMEIRA GERAÇÃO - EDIÇÃO 2021 (1).pptx
DOCX
PLANEJAMENTO QUINZENAL - 18.08.2025 à 29.08.2025 - 2ºANO - PROFESSORA PATRÍCI...
PPTX
Lição 8 EBD.pptxtudopossonaquelequemimfortalece
PPTX
1. A Cultura do Palco - muitos palcos, um espetáculo.pptx
PPTX
disciplulado curso preparatorio para novos
PPTX
norma regulamentadora numero vinte nr 20
PPTX
EMBRIOLOGIA ANIMAL - fases do desenvolvimento.pptx
PDF
Formação politica brasil_2017.pptx.pdf
PDF
50 anos Hoje - Volume V - 1973 - Manaus Amazonas
PDF
DOENÇAS SEXUALMENTE TRANSMISSIVEIS E SUAS POLARIDADES
PPTX
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
PDF
metabolismo energtico das clulas-131017092002-phpapp02.pdf
PDF
Extintores e Acessórios por Francisco Borges.pdf
PPTX
Biologia celular: citologia, é o estudo da célula, a unidade básica da vida.
A provisão de jojuador (ramadã) islamismo
Pedagogia em Ambientes Não Escolares.pptx
4. A Cultura da Catedral - HistóriaCArtes .ppsx
Ebook - Matemática_Ensino_Médio_Saeb_V1.pdf
PPP 2024 (2) (2) feito EM REELABORAÇÃO MORENA ( ABRIL 2024).doc
4. A cultura do cinema e as vanguardas.pptx
16. MODERNISMO - PRIMEIRA GERAÇÃO - EDIÇÃO 2021 (1).pptx
PLANEJAMENTO QUINZENAL - 18.08.2025 à 29.08.2025 - 2ºANO - PROFESSORA PATRÍCI...
Lição 8 EBD.pptxtudopossonaquelequemimfortalece
1. A Cultura do Palco - muitos palcos, um espetáculo.pptx
disciplulado curso preparatorio para novos
norma regulamentadora numero vinte nr 20
EMBRIOLOGIA ANIMAL - fases do desenvolvimento.pptx
Formação politica brasil_2017.pptx.pdf
50 anos Hoje - Volume V - 1973 - Manaus Amazonas
DOENÇAS SEXUALMENTE TRANSMISSIVEIS E SUAS POLARIDADES
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
metabolismo energtico das clulas-131017092002-phpapp02.pdf
Extintores e Acessórios por Francisco Borges.pdf
Biologia celular: citologia, é o estudo da célula, a unidade básica da vida.

Conjuntos numéricos gabarito

  • 1. CONJUNTOS NUMÉRICOS CN.7.01.A 1) Defina os conjuntos: ℕ = {0,1,2, … , 𝑛, 𝑛 + 1, … } - Conjunto dos Números Naturais ℤ = {… , −3, −2, −1,0,1,2, … } - Conjunto dos Números Racionais ℚ = { 𝑝 𝑞 ; 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0} - Conjunto dos Números Racionais 2) Dado diagrama, coloque nos lugares corretos os números 3) Escreva o nome e defina: ℕ ∗= {𝑥 ∈ ℕ; 𝑥 ≠ 0} Nome: Conjunto dos Números Naturais Não Nulos ℤ ∗= {𝑥 ∈ ℤ; 𝑥 ≠ 0} Nome: Conjunto dos Números Inteiros Não Nulos ℤ+={𝑥 ∈ ℤ; 𝑥 ≥ 0} Nome: Conjunto dos Números Inteiros Não Negativos ℤ−={𝑥 ∈ ℤ; 𝑥 ≤ 0} Nome: Conjunto dos Números Inteiros Não Positivos ℤ+ ∗ ={𝑥 ∈ ℤ; 𝑥 > 0} Nome: Conjunto dos Números Inteiros Positivos ℤ− ∗ ={𝑥 ∈ ℤ; 𝑥 < 0} Nome: Conjunto dos Números Inteiros Negativos CONJUNTOS NUMÉRICOS CN.7.01.B ℚ ∗={𝑥 ∈ ℚ; 𝑥 ≠ 0} Nome: Conjunto dos Números Racionais Não Nulos ℚ+={𝑥 ∈ ℚ; 𝑥 ≥ 0} Nome: Conjunto dos Números Racionais Não Negativos ℚ−={𝑥 ∈ ℚ; 𝑥 ≤ 0} Nome: Conjunto dos Números Racionais Não Positivos ℚ+ ∗ ={𝑥 ∈ ℚ; 𝑥 > 0} Nome: Conjunto dos Números RacionaisPositivos ℚ− ∗ ={𝑥 ∈ ℚ; 𝑥 < 0} Nome: Conjunto dos Números Racionais Negativos 4) Pode-se dizer que A*=A- {0}. Dado isso, seℙ é o conjunto dos números pares, o que seria ℙ*? O conjunto dos Pares menos o zero, ou seja, {2,4,6,8,..., 2n, 2n+2, ...} 5) Complete com ∈ ou ∉: 0 ∈ ℕ 0 ∈ ℤ 0∈ ℚ 5 ∈ ℕ 5∈ ℤ 5∈ ℚ -2 ∉ ℕ -2∈ ℤ -2∈ ℚ 0,3 ∉ ℕ 0,3∉ ℤ 0,3∈ ℚ 2/3 ∉ ℕ 2/3∉ ℤ 2/3∈ ℚ -0,5 ∉ ℕ -0,5∉ ℤ 0,5∈ ℚ -1/5 ∉ ℕ -1/5∉ ℤ -1/5∈ ℚ 0,333....∉ ℕ 0,333....∉ ℤ 0,333...∈ ℚ 6) Escreva os números em seus locais nos diagramas de Venn: 1 2 3 deve entrar no terceiro círculo. Nenhum dos elementos ficará no último círculo (não aprendemos ainda os números reais) CONJUNTOS NUMÉRICOS CN.7.01.C 1) Complete com ⊂ (contém) ou ⊄ (não contém): ℕ ⊂ ℤ ℕ ⊂ ℚ ℤ ⊄ ℕ ℤ ⊂ ℚ ℚ ⊄ ℕ ℚ ⊄ ℤ A relação de pertinência existe quando relacionamos ELEMENTO e CONJUNTO. Podemos dizer então que: 5∈{0,1,2,3,4,5} e 2/3 ∈ ℚ enquanto 7∉{0,1,2,3,4,5} e 2/3 ∉ ℤ Já a relação de pertinência existe quando relacionamos CONJUNTO e CONJUNTO, nesse caso dizemos que está contido e não está contido {1,2}⊂{0,1,2,3,4} {1,5}⊄{0,1,2,3,4} Um conjunto está contido no outro quando TODOS os seus elementos pertencem ao outro. 8) Determine a união e intersecção entre os conjuntos dos números naturais, inteiros e racionais. ℕ ∪ ℤ = ℤ ℕ ∪ ℚ = ℚ ℤ ∪ ℚ = ℚ ℕ ∩ ℤ = ℕ ℕ ∩ ℚ = ℕ ℤ ∩ ℚ = ℤ 9) Escreva 4 relações de inclusão entre conjuntos não-negativos, não-positivos, negativos, positivos e não- nulos envolvendo quaisquer conjuntos. ℤ+= ℕ ℤ− ∗ ⊂ ℚ− ∗ ℤ− ∗ ⊂ ℤ+ ℕ ∗=ℤ+ ∗ Existem outras 10) Pesquise as propriedades e as escreva (com ajuda do professor): Considere a, b, c números racionais. Propriedades da Adição Nome Sent; COMUTATIVA a+b=b+a ASSOCIATIVA (a+b)+c=a+(b+c) ELEMENTO NEUTRO a+0=0+a=a ELEMENTO OPOSTO a+(-a)=0 FECHAMENTO a+b∈ ℚ CANCEL. ADITIVO Se a+c+b+c então a=b Propriedades da Multiplicação Nome Sent. COMUTATIVA ab=ba ASSOCIATIVA (ab)c=a(bc) ELEMENTO NEUTRO a.1=1.a=a DISTRIBUTIVA EM RELAÇÃO À ADIÇÃO a(b+c)=ab+ac (a+b)c=ac+bc ELEMENTO INVERSO a.(1/a)=1 OBS: a≠0 FECHAMENTO ab∈ ℚ CANCELAMENTO MULTIPLICATIVO Se ac=bc então a=b OBS: a≠0 CONJUNTOS NUMÉRICOS CN.7.01.D 1) Localize na reta: a) A= ½ b) B=1/3 c) C=5/6 d) D=2/5 e) E=3/4 2) Localize na reta: a) A=-1/2 b) B=-2/3 c) C=-5/8 Pela dificuldade de edição e falta de aplicativo apropriado, pedimos que procure o professor para resolução dos exercícios 2 e 3 3) Localize na reta: a) A= 4 1 2 b) 3 2 1B c) 4 1 2C d) 5 1 1D e) 5 2 E f) 3G 4. Ache o módulo, o inverso e o oposto de: a) 2/3 módulo 2/3 inverso 3/2 oposto -2/3 b) 3/5 módulo 3/5 inverso 5/3 oposto -3/5 c) 1/4 módulo ¼ inverso 4 oposto -1/4 d) 4 módulo 4 inverso ¼ oposto -4 e) -2 módulo 2 inverso -1/2 oposto 2 f) -2/3 módulo 2/3 inverso -3/2 oposto 2/3 5.Ache o inverso de 4 1 2 . 2 1 4 = 9 4 , logo o inverso é 4/9 6. Ache o oposto do inverso de -3/4. Resposta: 4/3 7) Ache a metade do triplo do inverso de 6 1 . Inverso – 6 Triplo do inverso – 18 Metade disso – 9 8. (Concurso Professor de Matemática 5ª à 8ª séries – Prefeitura Municipal de Orlândia-SP/2003) A figura mostra um trecho da reta numérica: Os pontos P e Q, indicados pelas setas, podem corresponder, respectivamente, aos números: e) -1,64 e -1,515 9. (Avaliação do SAEB – 4ª série – 2001) A reta numerada, o ponto A representa o número c) 7,5 CONJUNTOS NUMÉRICOS CN.7.01.E 10. (Avaliação do SAEB – 4ª série – 2001) O número decimal correspondente ao ponto assinalado na reta numérica é c) 2,3 11. (Concurso Professor de Matemática 5ª à 8ª séries e Ensino Médio– SESI- SP/2002) Na figura abaixo estão representados geometricamente os números reais –1, y, 0, x e 1.
  • 2. Com base nessa representação, é possível concluir que o produto x.y está localizado y é negativo e menor que 1 x está entre 0 e 1 Ignorando o sinal x . y é um número menor que y, mas xy é negativo, então estão entre y e 0. Veja um exemplo y=-1,3 e x=0,5, então xy=-0,65 c) entre y e 0 12. (Concurso de Fiscal de Serviços Públicos – Prefeitura Municipal de São Carlos / 2002) Observe a figura abaixo. Os números indicados pelos pontos A e B na escala decimal são, respectivamente, c) 2,385 e 2,402 13. (Avaliação do SARESP 1998 – 5ª série - Diurno) Examine a figura: O ponto A corresponde a um dos números abaixo. A qual deles? Não há gabarito, o A deve ser próximo de 2,4 CONJUNTOS NUMÉRICOS CN.7.01.F 14. (SIMAVE – 4ª série – 2002) Roberto está com febre. Veja a ilustração do termômetro que marca a temperatura dele: O termômetro está marcando: B) 39,3º C 15. (ENCCEJA – Ensino Fundamental – 2002) Uma estrada está sinalizada com marcadores de quilometragem que guardam entre si a mesma distância. Um carro X está na posição 150 e um carro Y, na posição 310. Um carro Z está entre X e Y, conforme a figura abaixo. Dentre as alternativas, assinale a que melhor expressa, em quilômetros, a localização do carro Z. (D) 270. 16. (Concurso Público para Professor de 5ª à 8ª série – Prefeitura Municipal de Araçatuba – SP/2000) Com 3 cartões numerados de 1 a 3, e um cartão marcado com uma vírgula, podemos representar, por exemplo, o no decimal 1,23. O maior número e o menor número, expressos na notação decimal, que podemos representar com os quatro cartões são, respectivamente: c) 32,1 e 1,23 17.(Avaliação do SARESP 2000 – 5ª série - Diurno) Das comparações abaixo, qual é verdadeira? d) 2>1,9 18. (Concurso Público para Professor de 1ª à 4ª série – Prefeitura Cidade do Rio de Janeiro/2001?) Com 3 cartões numerados de 1 a 3, e um quarto cartão com uma vírgula, podemos representar, por exemplo, o no decimal 1,23. Quantos números decimais podemos representar com os quatro cartões? d) 12 Ignorando a vírgula temos 3x2x1=6 possibilidades. A vírgula pode ser colocada em 2 posições, ou seja 6x2=12, números. Listando: 1,23 12,3 1,32 13,2 2,13 21,3 2,31 23,1 3,12 31,2 3,21 32,1 CONJUNTOS NUMÉRICOS CN.7.01.G 19. (ENCCEJA – Ensino Fundamental – 2002) Uma agência de modelos está selecionando jovens para uma propaganda de sorvetes. Entre as exigências, a agência solicita que os jovens tenham altura mínima de 1,65 m e máxima de 1,78 m. Se x é um número racional que representa a altura, em metros, de um jovem que pode ser escolhido para essa propaganda, é correto afirmar que (C) 1,65 x 1,78 (D) 1,65 x 1,78 Veja que as respostas estão iguais (erro meu) 20. (Avaliação do SARESP 1998 – 5ª série - Diurno) Célia fez regime e anotou seu progresso numa tabela: Semana Perda em Quilogramas 1ª 2,45 2ª 1,3 3ª 2,54 4ª 1,03 Em qual semana Célia perdeu menos peso? d) 4ª 21. (Avaliação do SAEB – 4ª série – 2001) Qual é o maior dos números abaixo: d) 0,8 22. (Concurso para o Magistério do Estado e Município do Rio de Janeiro – 1988) Se x e y são números reais tais que 3,23<x<5,01 e 2,81<y<4,54, então, sobre a diferença x-y, pode-se afirmar que: a) -1,31<x-y<2,20 b) -1,41<x-y<0,73 c) 0,42<x-y<2,50 d) 0,42<x-y<2,73 e) 6,04<x-y<9,55 23. (Concurso do Magistério Estadual do Rio de Janeiro – 1990) Numa régua graduada, o segmento cujos extremos são X=7,13 e Y=8,32 se encontra dividido em sete partes iguais, conforme se vê na figura abaixo. O número decimal Z, correspondente à terceira divisão a partir da extremidade X, é expresso por: 8,32-7,13=1,19 São 7 segmentos 1,19:7=0,17 3 x 0,17 = 0,51 7,13+0,51 = 7,64 d) 7,64 CONJUNTOS NUMÉRICOS CN.7.01.H 1) Escreva, usando as três notações: a) o intervalo aberto de extremos -2 e 1. -2<x<1 ]-2,1[ b) o intervalo semi-aberto à esquerda de extremos 3 e 8. 3<x≤8 ]3,8] c) o intervalo fechado de extremos 0 e 5. 0≤x≤5 [0,5] d) o intervalo semi-aberto à direita de extremos -5 e 1. -5≤x<1 [-5,1[ 2) Usando a notação de intervalo, escreva: a) o subconjunto de IR formado pelos números reais maiores que 3. x>3 ]3,∞[ b) o subconjunto de IR formado pelos números reais menores que -1. x<-1 ]-∞,-1[ c) o subconjunto de IR formado pelos números reais maiores ou iguais a 2. x≥2 [2,∞[ d) o subconjunto de IR formado pelos números reais menores ou iguais a ½. x≤1/2 ]- ∞,1/2] 3)Usando a notação de conjuntos, escreva os intervalos: a) [6,10[ 6≤x<10 b) ]-1,5] -1<x≤ 5 c) ]-6,0[ -6<x<0 d) [0,+[ x≥0 e) ]-,3[ x<3 f) [-5,2[ -5≤ 𝑥 < 2 g) ]-10,10[ -10<x<10 h)[- 3 , 3 ] −√3 ≤ 𝑥 ≤ √3 i)]-,1] x≤ 1 Outros exercícios da folha verificar com o professor. CONJUNTOS NUMÉRICOS CN.7.01.I 1) Escreva os conjuntos por extenso (use adequadamente as reticências ... ) {𝑥 ∈ ℤ; 3 < 𝑥 < 10}= {4,5,6,7,8,9} {𝑥 ∈ ℤ; −2 < 𝑥 < 7}= {-1,0,1,2,3,4,5,6} {𝑥 ∈ ℤ ∗; −2 < 𝑥 < 7}= {-1,1,2,3,4,5,6} {𝑥 ∈ ℕ; 3 < 𝑥 < 10}= {4,5,6,7,8,9} {𝑥 ∈ ℕ; −2 < 𝑥 < 7}= {0,1,2,3,4,5,6} {𝑥 ∈ ℕ ∗; −2 < 𝑥 < 7}= {1,2,3,4,5,6} {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}= {3,4,5,6,7,8,9} {𝑥 ∈ ℤ; 3 < 𝑥 ≤ 10}= {4,5,6,7,8,9,10} {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10}= {3,4,5,6,7,8,9} {𝑥 ∈ ℤ; −1 ≤ 𝑥 < 5}= {-1,0,1,2,3,4} {𝑥 ∈ ℤ; −3 < 𝑥 ≤ 1}= {-2,-1,0,1} {𝑥 ∈ ℤ; −5 ≤ 𝑥 < −3}= {-5,-4} {𝑥 ∈ ℕ; 3 < 𝑥 < 4}= { }=∅ (nenhum número, não há números entre 3 e 4) {𝑥 ∈ ℕ; −5 < 𝑥 < −2}= { }=∅ (nenhum número, números naturais não podem ser negativos) {𝑥 ∈ ℕ; 5 < 𝑥 < 100}= {6,7,8,9,...,99,100} {𝑥 ∈ ℕ; −10 < 𝑥 < 500}= {-0,1,2,3,....,499,500} {𝑥 ∈ ℕ; 𝑥 < 10}= {0,1,2,3,4,5,6,7,8,9} {𝑥 ∈ ℕ; 𝑥 > 10}= {11,12,13,14,...} {𝑥 ∈ ℤ; 𝑥 < 10}= {...,-2,-1, 0,1,2,3,4,5,6,7,8,9} {𝑥 ∈ ℤ; 𝑥 > 10}= {11,12,13,14,...} {𝑥 ∈ ℤ ∗; 𝑥 > 10}= {11,12,13,14,...} {𝑥 ∈ ℤ; 𝑥 ≥ 10}= {...,-2,-1, 0,1,2,3,4,5,6,7,8,9,10} 2) Complete com ∈ (pertence) e ∉ (não pertence) -3 ∉ {𝑥 ∈ ℤ; 3 < 𝑥 < 10} 4 ∈ {𝑥 ∈ ℤ; 3 < 𝑥 < 10} 3 ∉ {𝑥 ∈ ℤ; 3 < 𝑥 < 10} 3∈ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10} 5,2∉ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10} 7/2∉ {𝑥 ∈ ℤ; 3 ≤ 𝑥 < 10} 5,2∈ {𝑥 ∈ ℚ; 3 ≤ 𝑥 < 10} 7/2∈ {𝑥 ∈ ℚ; 3 ≤ 𝑥 < 10} 0,555........ ∈ {𝑥 ∈ ℚ; −5 < 𝑥 < 10} -1/3∈ {𝑥 ∈ ℚ; −2 < 𝑥 ≤ 3} 5/9∉ {𝑥 ∈ ℚ; 1 ≤ 𝑥 ≤ 2} 9/7∈ {𝑥 ∈ ℚ; 0 ≤ 𝑥 < 1} 1 3 5 ∈ {𝑥 ∈ ℚ; 1 < 𝑥 < 2}