Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Prof. Me. Josivaldo Nascimento dos Passos
MEDIDAS DE DISPERS˜AO
UNIVERSIADE ESTADUAL DO MARANH˜AO
17 de outubro de 2016
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Sum´ario
Variˆancia e Desvio Padr˜ao
Introdu¸c˜ao;
Calculo da Variˆancia e Desvio Padr˜ao;
1o Caso - DADOS BRUTOS OU ROL
2o Caso - Vari´avel Discreta
3o Caso - Vari´avel Cont´ınua
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Introdu¸c˜ao
Observamos no item anterior que a dificuldade em se operar com o
DMS se deve a presen¸ca do m´odulo, para que as diferen¸cas xi − x
possam ser interpretadas como distˆancias.
Outra forma de se conseguir que as diferen¸cas xi − x se tornem
sempre positivas ou nulas ´e considerar o quadrado destas diferen¸cas,
isto ´e: (xi − x)2.
Se substituirmos, nas f´ormulas do DMS a express˜ao xi − x por
(xi − x)2, obteremos nova medida de dispers˜ao chamada variˆancia.
Portanto, variˆancia ´e uma m´edia aritm´etica calculada a partir dos
quadrados dos desvios obtidos entre os elementos da s´erie e a sua
m´edia.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Introdu¸c˜ao
O desvio padr˜ao ´e a raiz quadrada positiva da variˆancia.
Em particular, para estas medidas levaremos em considera¸c˜ao o fato
de a sequˆencia de dados representar toda uma popula¸c˜ao ou apenas
uma amostra de uma popula¸c˜ao.
No final desta sec¸c˜ao justificaremos esta necessidade.
Nota¸c˜oes: Quando a sequˆencia de dados representa uma Popula¸c˜ao
a variˆancia ser´a denotada por σ2(x) e o desvio padr˜ao correspon-
dente por σ(x).
Quando a sequˆencia de dados representa uma amostra, a variˆancia
ser´a denotada por s2(x) e o desvio padr˜ao correspondente por s(x).
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
1o
Caso - DADOS BRUTOS OU ROL
a) Se a sequˆencia representa uma Popula¸c˜ao, a variˆancia ´e calcu-
lada pela f´ormula:
σ2
(x) =
(xi − x)2
n
Exemplo
Calcule a variˆancia e o desvio padr˜ao da sequˆencia: X : 4, 5, 8, 5.
A sequˆencia cont´em n = 4 elementos e tem por m´edia:
X =
xi
n
=
4 + 5 + 8 + 5
4
= 5, 5
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
1o
Caso - DADOS BRUTOS OU ROL
Os quadrados das diferen¸cas (xi − x)2 valem:
(xi − x)2 = (4 − 5, 5)2 = 2, 25
(xi − x)2 = (5 − 5, 5)2 = 0, 25
(xi − x)2 = (8 − 5, 5)2 = 6, 25
(xi − x)2 = (5 − 5, 5)2 = 0, 25
Somando-se estes valores obtem-se (xi − x)2 = 9.
Substituindo esses valores na f´ormula da variˆancia, teremos:
σ2
(x) =
(xi − x)2
n
=
9
4
= 2, 25
Como o desvio padr˜ao ´e a raiz quadrada positiva da variˆancia,
σ(x) = σ2(x) = 2, 25 = 1, 5 unidades.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
1o
Caso - DADOS BRUTOS OU ROL
b) Se a sequˆencia anterior representasse apenas uma amostra, a
variˆancia seria denotada por s2(x) e o desvio padr˜ao por s(x).
Neste caso,
s2
(x) =
(xi − x)2
n − 1
e
s(x) = s2(x)
Notemos a diferen¸ca entre a f´ormula do slide 5 de σ2(x) (indi-
cado para Popula¸c˜oes) e s2(x) para amostra.
Assim,
s2(x) =
(xi − x)2
n − 1
=
9
3
= 3 e o desvio padr˜ao ´e s(x) =
√
3 = 1, 73.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
2o
Caso - VARI´AVEL DISCRETA
Como h´a repeti¸c˜oes de elementos na s´erie, definimos a variˆancia
como sendo uma m´edia aritm´etica ponderada dos quadrados dos
desvios dos elementos da s´erie para a m´edia da s´erie.
a) Se a vari´avel discreta ´e representativa de uma Popula¸c˜ao, ent˜ao
a variˆancia ´e dada por:
σ2
(x) =
[(xi − x)2.fi ]
fi
e o desvio padr˜ao ´e:
σ(x) = σ2(x)
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
2o
Caso - VARI´AVEL DISCRETA
b) Se a vari´avel discreta ´e representativa de uma amostra, ent˜ao
a variˆancia ´e dada por:
s2
(x) =
[(xi − x)2.fi ]
fi − 1
e o desvio padr˜ao ´e:
s(x) = s2(x)
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
2o
Caso - VARI´AVEL DISCRETA
Exemplo
Calcule a variˆancia e o desvio padr˜ao da s´erie abaixo, representativa
de uma popula¸c˜ao.
xi fi
2 3
3 5
4 8
5 4
O n´umero de elemento da s´erie ´e n = fi = 20.
A m´edia desta s´erie ´e X =
xi fi
fi
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
2o
Caso - VARI´AVEL DISCRETA
xi fi xi fi
2 3 6
3 5 15
4 8 32
5 4 20
fi = 20 xi fi = 73
A m´edia desta s´erie ´e X =
xi fi
fi
=
73
20
= 3, 65
Como estamos trabalhando com uma Popula¸c˜ao a variˆancia ´e dada
por:
σ2
(x) =
[(xi − x)2.fi ]
fi
Desenvolvendo nova coluna para estes c´alculos, obt´em-se:
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
2o
Caso - VARI´AVEL DISCRETA
xi fi xi fi (xi − x)2fi
2 3 6 8,1675
3 5 15 2,1125
4 8 32 0,9800
5 4 20 7,2900
fi = 20 xi fi = 73 [(xi − x)2fi ] = 18, 55
A variˆancia ´e:
σ2
(x) =
[(xi − x)2.fi ]
fi
=
18, 55
20
= 0, 9275
e o desvio padr˜ao correspondente ´e σ(x) =
√
0, 9275 = 0, 963
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
2o
Caso - VARI´AVEL DISCRETA
Exemplo
Se a vari´avel discreta fosse representativa de uma amostra, a
variˆancia seria indicada por s2(x) e seria calculada por:
s2
(x) =
[(xi − x)2.fi ]
fi − 1
=
18, 55
19
= 0, 9763
O desvio padr˜ao seria calculado por s(x) =
√
0, 9763 = 0, 988.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
3o
Caso - VARI´AVEL CONT´INUA
Novamente, por desconhecer os particulares valores xi da s´erie, subs-
tituiremos nas f´ormulas anteriores estes valores pelos pontos m´edios
de classe.
A f´ormula da variˆancia para uma vari´avel cont´ınua representativa de
uma popula¸c˜ao ´e:
σ2
(x) =
[(xi − x)2.fi ]
fi
onde xi ´e o ponto m´edio da classe i.
Se a vari´avel cont´ınua representa uma amostra ent˜ao a variˆancia
denotada por s2(x) e sua f´ormula de c´alculo ´e:
s2
(x) =
[(xi − x)2.fi ]
fi − 1
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
3o
Caso - VARI´AVEL CONT´INUA
Exemplo
Calcule a variˆancia e o desvio padr˜ao para a s´erie representativa de
uma Popula¸c˜ao:
Classe Int. cl. fi
1 0 4 1
2 4 8 3
3 8 12 5
4 12 16 1
O n´umero de elementos da s´erie ´e n = fi = 10.
A m´edia da s´erie ´e X =
xi fi
fi
onde xi s˜ao os pontos m´edios de
classe.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
3o
Caso - VARI´AVEL CONT´INUA
Classe Int. cl. fi xi fi
1 0 4 1 2
2 4 8 3 18
3 8 12 5 50
4 12 16 1 14
fi = 10 xi fi = 84
A m´edia da s´erie ´e:
X =
xi fi
fi
=
84
10
= 8, 4
Como a vari´avel cont´ınua ´e representativa de uma popula¸c˜ao,
ent˜ao a variˆancia ´e dada por:
σ2
(x) =
[(xi − x)2.fi ]
fi
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
3o
Caso - VARI´AVEL CONT´INUA
Classe Int. cl. fi xi fi (xi − x)2fi
1 0 4 1 2 40,96
2 4 8 3 18 17,28
3 8 12 5 50 12,80
4 12 16 1 14 31,36
= 10 = 84 = 102, 4
A variˆancia ´e, portanto:
σ2
(x) =
[(xi − x)2.fi ]
fi
=
102, 4
10
= 10, 24
e o desvio padr˜ao ´e: σ(x) =
√
10, 24 = 3, 2.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
3o
Caso - VARI´AVEL CONT´INUA
Exemplo
Se a vari´avel cont´ınua fosse representativa de uma amostra, a
variˆancia seria indicada por s2(x) e sua f´ormula de c´alculo seria:
s2
(x) =
[(xi − x)2.fi ]
fi − 1
Dessa forma, s2(x) =
102, 4
9
= 11, 38 e o desvio padr˜ao seria
s(x) =
√
11, 38 = 3, 373
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
Coment´arios:
1. No c´alculo da variˆancia, quando elevamos ao quadrado a di-
feren¸ca (xi − x), a unidade de medida da s´erie fica tamb´em
elevada ao quadrado.
Portanto, a variˆancia ´e dada sempre no quadrado da unidade
de medida da s´erie.
Se os dados s˜ao expressos em metros, a variˆancia ´e expressa
em metros quadrados.
Em algumas situa¸c˜oes, a unidade de medida da variˆancia nem
faz sentido.
´E o caso, por exemplo, em que os dados s˜ao expressos em litros.
A variˆancia ser´a expressa em litros quadrados.
Portanto, o valor da variˆancia n˜ao pode ser comparado dire-
tamente com os dados da s´erie, ou seja: variˆancia n˜ao tem
interpreta¸c˜ao.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
2. Exatamente para suprir esta deficiˆencia da variˆancia ´e que se
define o desvio padr˜ao.
Como o desvio padr˜ao ´e a raiz quadrada da variˆancia, o desvio
padr˜ao ter´a sempre a mesma unidade de medida da s´erie e
portanto admite interprcta¸c˜ao.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
O desvio padr˜ao ´e, sem duvida, a mais importante das medidas de
dispers˜ao.
´E fundamental que o interessado consiga relacionar o valor obtido
do desvio padr˜ao com os dados da s´erie.
Quando uma curva de frequˆencia representativa da s´erie ´e perfei-
tamente sim´etrica como a curva abaixo, podemos afirmar que o
intervalo [x − σ, x + σ] cont´em aproximadamente 68% dos valores
da s´erie.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
O intervalo [x − 2σ, x + 2σ] cont´em aproximadamente 95% dos
valores da s´erie.
O intervalo [x − 3σ, x + 3σ] cont´em aproximadamente 99% dos
valores da s´erie.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
Estes percentuais 68%, 95% e 99% que citamos na interpreta¸c˜ao
poder˜ao mais tarde ser comprovados, com maior precis˜ao, no estudo
da distribui¸c˜ao normal de probabilidades.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
Para uma compreens˜ao inicial do desvio padr˜ao, estas no¸c˜oes s˜ao
suficientes.
Quando a distribui¸c˜ao n˜ao ´e perfeitamente sim´etrica estes percen-
tuais apresentam pequenas varia¸c˜oes para mais ou para menos, se-
gundo o caso.
De modo que, quando se afirma que uma s´erie apresenta m´edia
x = 100 e desvio padr˜ao σ(x) = 5, podemos interpretar estes valores
da seguinte forma:
1. Os valores da s´erie est˜ao concentrados em torno de 100.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
2. O intervalo [95, 105] cont´em aproximadamente, 68% dos valo-
res da s´erie.
O intervalo [90, 110] cont´em aproximadamente 95% dos valores
da s´erie.
O intervalo [85, 115] cont´em aproximadamente 99% dos valores
da s´erie.
´E importante que se tenha percebido que, ao aumentar o tama-
nho do intervalo, aumenta-se o percentual de elementos contido
no intervalo.
Adiante verificaremos que ´e poss´ıvel controlar o tamanho do
intervalo de modo que contenha exatamente o percentual que
queremos.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
3. As medidas de dispers˜ao vistas at´e agora s˜ao medidas absolutas
e portanto avaliam a dispers˜ao absoluta da s´erie. Todas elas
s˜ao diretamente proporcionais a dispers˜ao absoluta.
Assim, se a s´erie X apresenta x = 20 e σ(x) = 3 e se a s´erie Y
apresenta y = 22 e σ(y) = 2, podemos afirmar, comparando
os desvios padr˜ao, que a s´erie X apresenta maior dispers˜ao
absoluta.
4. Para justificar que o denominador da variˆancia amostral deve
ser n − 1 e n˜ao n, usaremos o seguinte argumento:
O modelo matem´atico que calcula a variˆancia de uma amostra
n˜ao pode ser
σ2
(x) =
(xi − x)2
n
,
pois caso isto fosse verdadeiro, este modelo deveria determinar
a variˆancia para qualquer tamanho de amostra.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
Suponha uma amostra constitu´ıda de um ´unico elemento X1.
O valor m´edio da amostra tamb´em ´e x1.
Calculando a variˆancia pelo modelo acima, teremos:
σ2
(x) =
(xi − xi )2
1
= 0.
Ser´ıamos induzidos a afirmar que a dispers˜ao da popula¸c˜ao de onde
prov´em a amostra ´e zero, isto ´e, a popula¸c˜ao ´e constitu´ıda em sua to-
talidade por elementos idˆenticos. O que ´e, em geral, uma afirma¸c˜ao
falsa.
Para corrigir o modelo matem´atico, basta colocar no denominador
n − 1. O modelo ´e escrito ent˜ao:
s2
(x) =
(xi − x)2
n − 1
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Interpreta¸c˜ao do Desvio Padr˜ao
Observe que agora o modelo ´e coerente. Mesmo quando a amostra
tiver apenas um elemento x1, o c´alculo de s2(x) leva-nos a uma
indetermina¸c˜ao do tipo
0
0
. O que significa que a variˆancia existe,
mas n˜ao est´a determinada.
Significa tamb´em que amostras de apenas um elemento n˜ao nos
fornece informa¸c˜oes sobre a variˆancia da s´erie.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Medidas de dispers˜ao relativa
Se uma s´erie X apresenta x = 10 e σ(x) = 2 e uma s´erie Y apresenta
y = 100 e σ(y) = 5, do ponto de vista da dispers˜ao absoluta, a
s´erie Y apresenta maior dispers˜ao que a s´erie X.
No entanto, se levarmos em considera¸c˜ao as m´edias das s´eries, o
desvio padr˜ao de Y que ´e 5 em rela¸c˜ao a 100 ´e um valor menos
significativo que o desvio padr˜ao de X que ´e 2 em rela¸c˜ao a 10.
Isto nos leva a definir as medidas de dispers˜ao relativas: coeficiente
de varia¸c˜ao e variˆancia relativa.
O coeficiente de varia¸c˜ao de uma s´erie X ´e indicado por CV(x) de-
finido por:
CV(x) =
σ(x)
x
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Medidas de dispers˜ao relativa
A variˆancia relativa de uma s´erie X ´e indicada por V (x) e definida
por:
V (x) =
σ2(x)
(x)2
Note que o coeficiente de varia¸c˜ao, como ´e uma divis˜ao de elementos
de mesma unidade, ´e um n´umero puro. Portanto, pode ser expresso
em percentual.
Este fato justifica a utiliza¸c˜ao do denominador (x)2 na defini¸c˜ao de
V (x).
Deste modo, se calcularmos o coeficiente de varia¸c˜ao da s´erie X
citada no in´ıcio obteremos:
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Medidas de dispers˜ao relativa
CV(x) =
2
10
= 0, 2 ou 20%
Calculando o coeficiente de varia¸c˜ao da s´erie Y obteremos:
CV(y) =
5
100
= 0, 05 ou 5%
Comparando os valores destes dois coeficientes conclu´ımos que a
s´erie X admite maior dispers˜ao relativa.
Como a medida de dispers˜ao relativa leva em considera¸c˜ao a me-
dida de dispers˜ao absoluta e a m´edia da s´erie, ´e uma medida mais
completa que a medida de dispers˜ao absoluta.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
Medidas de dispers˜ao relativa
Portanto, a medida de dispers˜ao relativa prevalece sobre a medida
de dispers˜ao absoluta. Podemos afirmar que a s´erie que tem a maior
disperss˜ao relativa, tem de modo geral a maior dispers˜ao.
Concluindo o exemplo anterior:
A s´erie Y apresenta maior dispers˜ao absoluta.
A s´erie X apresenta maior dispers˜ao relativa.
Portanto, a s´erie X apresenta maior dispers˜ao.
Estat´ıtica B´asica
Variˆancia e Desvio Padr˜ao
Calculo da Variˆancia e Desvio Padr˜ao
Interpreta¸c˜ao do Desvio Padr˜ao
Medidas de dispers˜ao relativa
MARTINS, Gilberto de Andrade Martins, Estat´ıstica Geral e
Aplicada, 4 ed. S˜ao Paulo: Editora Atlas S.A., 2011
SILVA, Ermes Medeiros da; SILVA, Elio Medeiros da;
GONC¸ALVES, Valter; MUROLO, Afrˆanio Carlos,
ESTAT´ISTICA Para os cursos de: Economia, Administra¸c˜ao e
Ciˆencias Contabeis 3 ed. S˜ao Paulo: Editora Atlas S.A., 1999
Estat´ıtica B´asica

Mais conteúdo relacionado

PDF
Aula 08 de estatística
PDF
Aula 07 de estatística
PDF
Distribuicao de probabilidades
PPT
Aula de distribuição de probabilidade[1] cópia
PPTX
Modelos de probabilidade
PPT
Doc estatistica _687118434
PDF
Aula 5 probabilidade
PDF
C7 exercicios
Aula 08 de estatística
Aula 07 de estatística
Distribuicao de probabilidades
Aula de distribuição de probabilidade[1] cópia
Modelos de probabilidade
Doc estatistica _687118434
Aula 5 probabilidade
C7 exercicios

Mais procurados (20)

PDF
Análise exploratória e modelação com r parte 3
PPTX
Variáveis aleatórias discretas - Estatística II
PDF
Probabilidade e estatística - Variáveis Aleatórias
PDF
Testes de hipoteses
PDF
Aula 7 variáveis aleatórias
PDF
Distribuicao continua
PDF
Distribuição normal
PDF
Caderno - Estatítica Descritiva
PPTX
Variáveis aleatórias contínuas - Estatística II
PDF
Análise exploratória e modelação com r parte 2
PPTX
Regressão Linear Simples
PPT
3 probabilidade
PDF
Aula 11 estimação
PDF
Distribuição Normal
PDF
Exercicios de estatistica resolvido.4
PPTX
distribuição-t-student
PDF
Regressão - aula 01/04
PPSX
Aula 2 educação física
PPTX
Aula bioestatistica
PDF
Aula 9 variáveis aleatória contínua - parte 2
Análise exploratória e modelação com r parte 3
Variáveis aleatórias discretas - Estatística II
Probabilidade e estatística - Variáveis Aleatórias
Testes de hipoteses
Aula 7 variáveis aleatórias
Distribuicao continua
Distribuição normal
Caderno - Estatítica Descritiva
Variáveis aleatórias contínuas - Estatística II
Análise exploratória e modelação com r parte 2
Regressão Linear Simples
3 probabilidade
Aula 11 estimação
Distribuição Normal
Exercicios de estatistica resolvido.4
distribuição-t-student
Regressão - aula 01/04
Aula 2 educação física
Aula bioestatistica
Aula 9 variáveis aleatória contínua - parte 2
Anúncio

Destaque (15)

PPTX
λογοτεχνία ζωγραφική-τέχνη.Project.pptx
DOCX
My Resume
DOCX
Historia del plástico
PPTX
ΧΛΩΡΙΔΑ
DOCX
ηφαιστειο
DOCX
Herramientas para la creación y publicación
PPTX
Exports and import business
PPT
Personal characteristics and sales aptitude
PPT
αλληλογραφώ
PDF
By 2020, one million B2B sales jobs will be eliminated.
PDF
TCM - Costi di Trasporto
PPTX
Delete the branches from remote repositories(GIT)
ODP
Evaluation technologies
PDF
Email writing skills
λογοτεχνία ζωγραφική-τέχνη.Project.pptx
My Resume
Historia del plástico
ΧΛΩΡΙΔΑ
ηφαιστειο
Herramientas para la creación y publicación
Exports and import business
Personal characteristics and sales aptitude
αλληλογραφώ
By 2020, one million B2B sales jobs will be eliminated.
TCM - Costi di Trasporto
Delete the branches from remote repositories(GIT)
Evaluation technologies
Email writing skills
Anúncio

Semelhante a Aula 08 de estatística (20)

PPTX
AMD - Aula n.º 8 - regressão linear simples.pptx
PDF
Derivadas parciais e diferenciabilidade de funções de várias variáveis
PPTX
5-MEDIDAS-DE-DISPERSÃO aula de matematica.pptx
PPT
Aula de distribuição de probabilidade[1]
PDF
Introdução à cadeias de markov
PDF
Derivadas
PDF
Derivadas
PDF
Calculo1 aula14
PDF
Aplicações da equação de Schrödinger independente do tempo
PDF
Variaveis+aleatorias
PPT
Matemática e Mídias
PDF
06 variavel-aleatoria
PDF
2-1_Var aleatorias discretas e distribuicoes.pdf
PDF
Apostila regressao linear
PDF
Matemática básica derivada e integral
PDF
06-integrais de superfície
PDF
03 raizes
PDF
[2014 2015] cap_3_funcoes_varias_variáveis
PDF
Cursocalc1ead
PDF
Apostila 2 calculo i derivadas
AMD - Aula n.º 8 - regressão linear simples.pptx
Derivadas parciais e diferenciabilidade de funções de várias variáveis
5-MEDIDAS-DE-DISPERSÃO aula de matematica.pptx
Aula de distribuição de probabilidade[1]
Introdução à cadeias de markov
Derivadas
Derivadas
Calculo1 aula14
Aplicações da equação de Schrödinger independente do tempo
Variaveis+aleatorias
Matemática e Mídias
06 variavel-aleatoria
2-1_Var aleatorias discretas e distribuicoes.pdf
Apostila regressao linear
Matemática básica derivada e integral
06-integrais de superfície
03 raizes
[2014 2015] cap_3_funcoes_varias_variáveis
Cursocalc1ead
Apostila 2 calculo i derivadas

Mais de josivaldopassos (20)

PDF
Medidas de tendencia central continuação
PDF
Juros compostos1
PDF
Aula 06 de estatística
PDF
Aula 08 de estatística
PDF
Aula 07 de estatística
PDF
Aula 06 de estatística
PDF
Congruências
PDF
Sequências
PDF
Atividades de funções modulares
PDF
Exercícios de geometria espacial
PDF
Jogo dos palitos
PDF
Análise combinatória
PDF
Agenda de moblização
PDF
Agenda de moblização
PDF
Agenda de moblização
PDF
Agenda de moblização
PDF
Intervalos reais
PDF
Análise combinatória
PDF
Sequênicas
DOCX
Função exponencial
Medidas de tendencia central continuação
Juros compostos1
Aula 06 de estatística
Aula 08 de estatística
Aula 07 de estatística
Aula 06 de estatística
Congruências
Sequências
Atividades de funções modulares
Exercícios de geometria espacial
Jogo dos palitos
Análise combinatória
Agenda de moblização
Agenda de moblização
Agenda de moblização
Agenda de moblização
Intervalos reais
Análise combinatória
Sequênicas
Função exponencial

Último (20)

PDF
TREINAMENTO DE BRIGADISTA DE INCENCIO 2023
PPTX
Aula de psicofarmacologia: classes de psicofármacos
PDF
Apresentação Conteúdo sepsebdbsbdbb.pptx
PDF
E-BOOK-Inovacao-em-Ciencia-e-Tecnologia-de-Alimentos.pdf
PPTX
NR 5 Treinamento completo gestão CIPA.pptx
DOCX
Aula 3- Direitos Humanos e Prevenção à Violência .docx
PDF
Escala de Proficiência do SAEB_Escala de Proficiência do SAEB
PPTX
Adaptação Curricular para Alunos com Deficiências - EMEB. ODIR (1).pptx
PDF
DIÁLOGO DE LÍNGUA PORTUGUESA_ A NOVA MATRIZ .pptx (1).pdf
PDF
projeto 5 Em movimento Ciencias Humanas.pdf
PDF
SLIDES da Palestra Da Educação especial para Educação Inclusiva.pdf
PPTX
A enfermagem voltada aos adultos portadores de sindrome de down
PPTX
Aula 2 (Citologia).pptxlllllllllllllllllllllllll
PDF
Fronteira escrito por José de Souza Martins
PDF
morfologia5.pdfllllllllllllllllllllllllllll
PDF
Solucões-inovadoras-para-reduzir-desigualdades-educacionais (2).pdf
PPTX
NORMA 17 - ERGONOMIA NO TRABALHO - SST.pptx
PDF
APOSTILA PARA FORMAÇÃO E RECICLAGEM DE VIGILANTES.pdf
PPTX
OFICINA LINGUA PORTUGUESA9ANOFUNDAM.pptx
PDF
Linkage e teorias evolucionistas lamarck e darwin.pdf
TREINAMENTO DE BRIGADISTA DE INCENCIO 2023
Aula de psicofarmacologia: classes de psicofármacos
Apresentação Conteúdo sepsebdbsbdbb.pptx
E-BOOK-Inovacao-em-Ciencia-e-Tecnologia-de-Alimentos.pdf
NR 5 Treinamento completo gestão CIPA.pptx
Aula 3- Direitos Humanos e Prevenção à Violência .docx
Escala de Proficiência do SAEB_Escala de Proficiência do SAEB
Adaptação Curricular para Alunos com Deficiências - EMEB. ODIR (1).pptx
DIÁLOGO DE LÍNGUA PORTUGUESA_ A NOVA MATRIZ .pptx (1).pdf
projeto 5 Em movimento Ciencias Humanas.pdf
SLIDES da Palestra Da Educação especial para Educação Inclusiva.pdf
A enfermagem voltada aos adultos portadores de sindrome de down
Aula 2 (Citologia).pptxlllllllllllllllllllllllll
Fronteira escrito por José de Souza Martins
morfologia5.pdfllllllllllllllllllllllllllll
Solucões-inovadoras-para-reduzir-desigualdades-educacionais (2).pdf
NORMA 17 - ERGONOMIA NO TRABALHO - SST.pptx
APOSTILA PARA FORMAÇÃO E RECICLAGEM DE VIGILANTES.pdf
OFICINA LINGUA PORTUGUESA9ANOFUNDAM.pptx
Linkage e teorias evolucionistas lamarck e darwin.pdf

Aula 08 de estatística

  • 1. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Prof. Me. Josivaldo Nascimento dos Passos MEDIDAS DE DISPERS˜AO UNIVERSIADE ESTADUAL DO MARANH˜AO 17 de outubro de 2016 Estat´ıtica B´asica
  • 2. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Sum´ario Variˆancia e Desvio Padr˜ao Introdu¸c˜ao; Calculo da Variˆancia e Desvio Padr˜ao; 1o Caso - DADOS BRUTOS OU ROL 2o Caso - Vari´avel Discreta 3o Caso - Vari´avel Cont´ınua Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Estat´ıtica B´asica
  • 3. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Introdu¸c˜ao Observamos no item anterior que a dificuldade em se operar com o DMS se deve a presen¸ca do m´odulo, para que as diferen¸cas xi − x possam ser interpretadas como distˆancias. Outra forma de se conseguir que as diferen¸cas xi − x se tornem sempre positivas ou nulas ´e considerar o quadrado destas diferen¸cas, isto ´e: (xi − x)2. Se substituirmos, nas f´ormulas do DMS a express˜ao xi − x por (xi − x)2, obteremos nova medida de dispers˜ao chamada variˆancia. Portanto, variˆancia ´e uma m´edia aritm´etica calculada a partir dos quadrados dos desvios obtidos entre os elementos da s´erie e a sua m´edia. Estat´ıtica B´asica
  • 4. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Introdu¸c˜ao O desvio padr˜ao ´e a raiz quadrada positiva da variˆancia. Em particular, para estas medidas levaremos em considera¸c˜ao o fato de a sequˆencia de dados representar toda uma popula¸c˜ao ou apenas uma amostra de uma popula¸c˜ao. No final desta sec¸c˜ao justificaremos esta necessidade. Nota¸c˜oes: Quando a sequˆencia de dados representa uma Popula¸c˜ao a variˆancia ser´a denotada por σ2(x) e o desvio padr˜ao correspon- dente por σ(x). Quando a sequˆencia de dados representa uma amostra, a variˆancia ser´a denotada por s2(x) e o desvio padr˜ao correspondente por s(x). Estat´ıtica B´asica
  • 5. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 1o Caso - DADOS BRUTOS OU ROL a) Se a sequˆencia representa uma Popula¸c˜ao, a variˆancia ´e calcu- lada pela f´ormula: σ2 (x) = (xi − x)2 n Exemplo Calcule a variˆancia e o desvio padr˜ao da sequˆencia: X : 4, 5, 8, 5. A sequˆencia cont´em n = 4 elementos e tem por m´edia: X = xi n = 4 + 5 + 8 + 5 4 = 5, 5 Estat´ıtica B´asica
  • 6. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 1o Caso - DADOS BRUTOS OU ROL Os quadrados das diferen¸cas (xi − x)2 valem: (xi − x)2 = (4 − 5, 5)2 = 2, 25 (xi − x)2 = (5 − 5, 5)2 = 0, 25 (xi − x)2 = (8 − 5, 5)2 = 6, 25 (xi − x)2 = (5 − 5, 5)2 = 0, 25 Somando-se estes valores obtem-se (xi − x)2 = 9. Substituindo esses valores na f´ormula da variˆancia, teremos: σ2 (x) = (xi − x)2 n = 9 4 = 2, 25 Como o desvio padr˜ao ´e a raiz quadrada positiva da variˆancia, σ(x) = σ2(x) = 2, 25 = 1, 5 unidades. Estat´ıtica B´asica
  • 7. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 1o Caso - DADOS BRUTOS OU ROL b) Se a sequˆencia anterior representasse apenas uma amostra, a variˆancia seria denotada por s2(x) e o desvio padr˜ao por s(x). Neste caso, s2 (x) = (xi − x)2 n − 1 e s(x) = s2(x) Notemos a diferen¸ca entre a f´ormula do slide 5 de σ2(x) (indi- cado para Popula¸c˜oes) e s2(x) para amostra. Assim, s2(x) = (xi − x)2 n − 1 = 9 3 = 3 e o desvio padr˜ao ´e s(x) = √ 3 = 1, 73. Estat´ıtica B´asica
  • 8. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 2o Caso - VARI´AVEL DISCRETA Como h´a repeti¸c˜oes de elementos na s´erie, definimos a variˆancia como sendo uma m´edia aritm´etica ponderada dos quadrados dos desvios dos elementos da s´erie para a m´edia da s´erie. a) Se a vari´avel discreta ´e representativa de uma Popula¸c˜ao, ent˜ao a variˆancia ´e dada por: σ2 (x) = [(xi − x)2.fi ] fi e o desvio padr˜ao ´e: σ(x) = σ2(x) Estat´ıtica B´asica
  • 9. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 2o Caso - VARI´AVEL DISCRETA b) Se a vari´avel discreta ´e representativa de uma amostra, ent˜ao a variˆancia ´e dada por: s2 (x) = [(xi − x)2.fi ] fi − 1 e o desvio padr˜ao ´e: s(x) = s2(x) Estat´ıtica B´asica
  • 10. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 2o Caso - VARI´AVEL DISCRETA Exemplo Calcule a variˆancia e o desvio padr˜ao da s´erie abaixo, representativa de uma popula¸c˜ao. xi fi 2 3 3 5 4 8 5 4 O n´umero de elemento da s´erie ´e n = fi = 20. A m´edia desta s´erie ´e X = xi fi fi Estat´ıtica B´asica
  • 11. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 2o Caso - VARI´AVEL DISCRETA xi fi xi fi 2 3 6 3 5 15 4 8 32 5 4 20 fi = 20 xi fi = 73 A m´edia desta s´erie ´e X = xi fi fi = 73 20 = 3, 65 Como estamos trabalhando com uma Popula¸c˜ao a variˆancia ´e dada por: σ2 (x) = [(xi − x)2.fi ] fi Desenvolvendo nova coluna para estes c´alculos, obt´em-se: Estat´ıtica B´asica
  • 12. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 2o Caso - VARI´AVEL DISCRETA xi fi xi fi (xi − x)2fi 2 3 6 8,1675 3 5 15 2,1125 4 8 32 0,9800 5 4 20 7,2900 fi = 20 xi fi = 73 [(xi − x)2fi ] = 18, 55 A variˆancia ´e: σ2 (x) = [(xi − x)2.fi ] fi = 18, 55 20 = 0, 9275 e o desvio padr˜ao correspondente ´e σ(x) = √ 0, 9275 = 0, 963 Estat´ıtica B´asica
  • 13. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 2o Caso - VARI´AVEL DISCRETA Exemplo Se a vari´avel discreta fosse representativa de uma amostra, a variˆancia seria indicada por s2(x) e seria calculada por: s2 (x) = [(xi − x)2.fi ] fi − 1 = 18, 55 19 = 0, 9763 O desvio padr˜ao seria calculado por s(x) = √ 0, 9763 = 0, 988. Estat´ıtica B´asica
  • 14. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 3o Caso - VARI´AVEL CONT´INUA Novamente, por desconhecer os particulares valores xi da s´erie, subs- tituiremos nas f´ormulas anteriores estes valores pelos pontos m´edios de classe. A f´ormula da variˆancia para uma vari´avel cont´ınua representativa de uma popula¸c˜ao ´e: σ2 (x) = [(xi − x)2.fi ] fi onde xi ´e o ponto m´edio da classe i. Se a vari´avel cont´ınua representa uma amostra ent˜ao a variˆancia denotada por s2(x) e sua f´ormula de c´alculo ´e: s2 (x) = [(xi − x)2.fi ] fi − 1 Estat´ıtica B´asica
  • 15. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 3o Caso - VARI´AVEL CONT´INUA Exemplo Calcule a variˆancia e o desvio padr˜ao para a s´erie representativa de uma Popula¸c˜ao: Classe Int. cl. fi 1 0 4 1 2 4 8 3 3 8 12 5 4 12 16 1 O n´umero de elementos da s´erie ´e n = fi = 10. A m´edia da s´erie ´e X = xi fi fi onde xi s˜ao os pontos m´edios de classe. Estat´ıtica B´asica
  • 16. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 3o Caso - VARI´AVEL CONT´INUA Classe Int. cl. fi xi fi 1 0 4 1 2 2 4 8 3 18 3 8 12 5 50 4 12 16 1 14 fi = 10 xi fi = 84 A m´edia da s´erie ´e: X = xi fi fi = 84 10 = 8, 4 Como a vari´avel cont´ınua ´e representativa de uma popula¸c˜ao, ent˜ao a variˆancia ´e dada por: σ2 (x) = [(xi − x)2.fi ] fi Estat´ıtica B´asica
  • 17. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 3o Caso - VARI´AVEL CONT´INUA Classe Int. cl. fi xi fi (xi − x)2fi 1 0 4 1 2 40,96 2 4 8 3 18 17,28 3 8 12 5 50 12,80 4 12 16 1 14 31,36 = 10 = 84 = 102, 4 A variˆancia ´e, portanto: σ2 (x) = [(xi − x)2.fi ] fi = 102, 4 10 = 10, 24 e o desvio padr˜ao ´e: σ(x) = √ 10, 24 = 3, 2. Estat´ıtica B´asica
  • 18. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa 3o Caso - VARI´AVEL CONT´INUA Exemplo Se a vari´avel cont´ınua fosse representativa de uma amostra, a variˆancia seria indicada por s2(x) e sua f´ormula de c´alculo seria: s2 (x) = [(xi − x)2.fi ] fi − 1 Dessa forma, s2(x) = 102, 4 9 = 11, 38 e o desvio padr˜ao seria s(x) = √ 11, 38 = 3, 373 Estat´ıtica B´asica
  • 19. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao Coment´arios: 1. No c´alculo da variˆancia, quando elevamos ao quadrado a di- feren¸ca (xi − x), a unidade de medida da s´erie fica tamb´em elevada ao quadrado. Portanto, a variˆancia ´e dada sempre no quadrado da unidade de medida da s´erie. Se os dados s˜ao expressos em metros, a variˆancia ´e expressa em metros quadrados. Em algumas situa¸c˜oes, a unidade de medida da variˆancia nem faz sentido. ´E o caso, por exemplo, em que os dados s˜ao expressos em litros. A variˆancia ser´a expressa em litros quadrados. Portanto, o valor da variˆancia n˜ao pode ser comparado dire- tamente com os dados da s´erie, ou seja: variˆancia n˜ao tem interpreta¸c˜ao. Estat´ıtica B´asica
  • 20. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao 2. Exatamente para suprir esta deficiˆencia da variˆancia ´e que se define o desvio padr˜ao. Como o desvio padr˜ao ´e a raiz quadrada da variˆancia, o desvio padr˜ao ter´a sempre a mesma unidade de medida da s´erie e portanto admite interprcta¸c˜ao. Estat´ıtica B´asica
  • 21. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao O desvio padr˜ao ´e, sem duvida, a mais importante das medidas de dispers˜ao. ´E fundamental que o interessado consiga relacionar o valor obtido do desvio padr˜ao com os dados da s´erie. Quando uma curva de frequˆencia representativa da s´erie ´e perfei- tamente sim´etrica como a curva abaixo, podemos afirmar que o intervalo [x − σ, x + σ] cont´em aproximadamente 68% dos valores da s´erie. Estat´ıtica B´asica
  • 22. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao O intervalo [x − 2σ, x + 2σ] cont´em aproximadamente 95% dos valores da s´erie. O intervalo [x − 3σ, x + 3σ] cont´em aproximadamente 99% dos valores da s´erie. Estat´ıtica B´asica
  • 23. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao Estes percentuais 68%, 95% e 99% que citamos na interpreta¸c˜ao poder˜ao mais tarde ser comprovados, com maior precis˜ao, no estudo da distribui¸c˜ao normal de probabilidades. Estat´ıtica B´asica
  • 24. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao Para uma compreens˜ao inicial do desvio padr˜ao, estas no¸c˜oes s˜ao suficientes. Quando a distribui¸c˜ao n˜ao ´e perfeitamente sim´etrica estes percen- tuais apresentam pequenas varia¸c˜oes para mais ou para menos, se- gundo o caso. De modo que, quando se afirma que uma s´erie apresenta m´edia x = 100 e desvio padr˜ao σ(x) = 5, podemos interpretar estes valores da seguinte forma: 1. Os valores da s´erie est˜ao concentrados em torno de 100. Estat´ıtica B´asica
  • 25. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao 2. O intervalo [95, 105] cont´em aproximadamente, 68% dos valo- res da s´erie. O intervalo [90, 110] cont´em aproximadamente 95% dos valores da s´erie. O intervalo [85, 115] cont´em aproximadamente 99% dos valores da s´erie. ´E importante que se tenha percebido que, ao aumentar o tama- nho do intervalo, aumenta-se o percentual de elementos contido no intervalo. Adiante verificaremos que ´e poss´ıvel controlar o tamanho do intervalo de modo que contenha exatamente o percentual que queremos. Estat´ıtica B´asica
  • 26. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao 3. As medidas de dispers˜ao vistas at´e agora s˜ao medidas absolutas e portanto avaliam a dispers˜ao absoluta da s´erie. Todas elas s˜ao diretamente proporcionais a dispers˜ao absoluta. Assim, se a s´erie X apresenta x = 20 e σ(x) = 3 e se a s´erie Y apresenta y = 22 e σ(y) = 2, podemos afirmar, comparando os desvios padr˜ao, que a s´erie X apresenta maior dispers˜ao absoluta. 4. Para justificar que o denominador da variˆancia amostral deve ser n − 1 e n˜ao n, usaremos o seguinte argumento: O modelo matem´atico que calcula a variˆancia de uma amostra n˜ao pode ser σ2 (x) = (xi − x)2 n , pois caso isto fosse verdadeiro, este modelo deveria determinar a variˆancia para qualquer tamanho de amostra. Estat´ıtica B´asica
  • 27. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao Suponha uma amostra constitu´ıda de um ´unico elemento X1. O valor m´edio da amostra tamb´em ´e x1. Calculando a variˆancia pelo modelo acima, teremos: σ2 (x) = (xi − xi )2 1 = 0. Ser´ıamos induzidos a afirmar que a dispers˜ao da popula¸c˜ao de onde prov´em a amostra ´e zero, isto ´e, a popula¸c˜ao ´e constitu´ıda em sua to- talidade por elementos idˆenticos. O que ´e, em geral, uma afirma¸c˜ao falsa. Para corrigir o modelo matem´atico, basta colocar no denominador n − 1. O modelo ´e escrito ent˜ao: s2 (x) = (xi − x)2 n − 1 Estat´ıtica B´asica
  • 28. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Interpreta¸c˜ao do Desvio Padr˜ao Observe que agora o modelo ´e coerente. Mesmo quando a amostra tiver apenas um elemento x1, o c´alculo de s2(x) leva-nos a uma indetermina¸c˜ao do tipo 0 0 . O que significa que a variˆancia existe, mas n˜ao est´a determinada. Significa tamb´em que amostras de apenas um elemento n˜ao nos fornece informa¸c˜oes sobre a variˆancia da s´erie. Estat´ıtica B´asica
  • 29. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Medidas de dispers˜ao relativa Se uma s´erie X apresenta x = 10 e σ(x) = 2 e uma s´erie Y apresenta y = 100 e σ(y) = 5, do ponto de vista da dispers˜ao absoluta, a s´erie Y apresenta maior dispers˜ao que a s´erie X. No entanto, se levarmos em considera¸c˜ao as m´edias das s´eries, o desvio padr˜ao de Y que ´e 5 em rela¸c˜ao a 100 ´e um valor menos significativo que o desvio padr˜ao de X que ´e 2 em rela¸c˜ao a 10. Isto nos leva a definir as medidas de dispers˜ao relativas: coeficiente de varia¸c˜ao e variˆancia relativa. O coeficiente de varia¸c˜ao de uma s´erie X ´e indicado por CV(x) de- finido por: CV(x) = σ(x) x Estat´ıtica B´asica
  • 30. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Medidas de dispers˜ao relativa A variˆancia relativa de uma s´erie X ´e indicada por V (x) e definida por: V (x) = σ2(x) (x)2 Note que o coeficiente de varia¸c˜ao, como ´e uma divis˜ao de elementos de mesma unidade, ´e um n´umero puro. Portanto, pode ser expresso em percentual. Este fato justifica a utiliza¸c˜ao do denominador (x)2 na defini¸c˜ao de V (x). Deste modo, se calcularmos o coeficiente de varia¸c˜ao da s´erie X citada no in´ıcio obteremos: Estat´ıtica B´asica
  • 31. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Medidas de dispers˜ao relativa CV(x) = 2 10 = 0, 2 ou 20% Calculando o coeficiente de varia¸c˜ao da s´erie Y obteremos: CV(y) = 5 100 = 0, 05 ou 5% Comparando os valores destes dois coeficientes conclu´ımos que a s´erie X admite maior dispers˜ao relativa. Como a medida de dispers˜ao relativa leva em considera¸c˜ao a me- dida de dispers˜ao absoluta e a m´edia da s´erie, ´e uma medida mais completa que a medida de dispers˜ao absoluta. Estat´ıtica B´asica
  • 32. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa Medidas de dispers˜ao relativa Portanto, a medida de dispers˜ao relativa prevalece sobre a medida de dispers˜ao absoluta. Podemos afirmar que a s´erie que tem a maior disperss˜ao relativa, tem de modo geral a maior dispers˜ao. Concluindo o exemplo anterior: A s´erie Y apresenta maior dispers˜ao absoluta. A s´erie X apresenta maior dispers˜ao relativa. Portanto, a s´erie X apresenta maior dispers˜ao. Estat´ıtica B´asica
  • 33. Variˆancia e Desvio Padr˜ao Calculo da Variˆancia e Desvio Padr˜ao Interpreta¸c˜ao do Desvio Padr˜ao Medidas de dispers˜ao relativa MARTINS, Gilberto de Andrade Martins, Estat´ıstica Geral e Aplicada, 4 ed. S˜ao Paulo: Editora Atlas S.A., 2011 SILVA, Ermes Medeiros da; SILVA, Elio Medeiros da; GONC¸ALVES, Valter; MUROLO, Afrˆanio Carlos, ESTAT´ISTICA Para os cursos de: Economia, Administra¸c˜ao e Ciˆencias Contabeis 3 ed. S˜ao Paulo: Editora Atlas S.A., 1999 Estat´ıtica B´asica