4
Mais lidos
12
Mais lidos
13
Mais lidos
EquaçõEs
 litErais
Observa as equações seguintes:


            3x + 7 y = 1
            3x + 7 z = y
            3x + 7 = 0
As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é
uma equação literal.

Então, qual será a definição de equação literal?



        Equações literais – são equações que têm mais do que uma variável, isto é,
        pelo menos 2 incógnitas.
Exemplos de equações literais:


•A equação y = 6 x + 2 que representa uma reta não vertical (função afim)

•A equação   y = 6x       que representa uma reta que passa na origem
                          do referencial (função linear).
 (equações do 1.º grau com duas incógnitas)
                                                                   Geogebra
 Quantas soluções têm?

 •As fórmulas:                       b×h            ( B + b) × h
                 A = l2         A=             A=
                                      2                  2
 que representam, respetivamente, as áreas do quadrado, do triângulo e
 do trapézio.

  • A equação da relatividade E = mc2.

  •A fórmula do teorema de Pitágoras a = b + c
                                      2   2    2
Como resolver equações literais?

  As regras para resolver equações, também se aplicam à resolução de uma
  equação literal, em ordem a qualquer uma das letras que nela figuram.

Exemplo I:

Observa a figura:
                                                    Perímetro 12 cm      y
  A figura sugere a seguinte equação,

                           2 x + 2 y = 12               x
Como a equação tem duas variáveis x e y, podemos resolvê-la em ordem a
x ou em ordem a y, isto é:                                    Nota:
                                                              Quando uma letra é
                                2 x + 2 y = 12 ⇔              a incógnita, as
                                                              outras letras
                               ⇔ 2 x = 12 − 2 y ⇔             funcionam como se
                                                              fossem números.
                                      12 − 2 y
                               ⇔x=             ⇔
                                          2
                               ⇔ x = 6− y       Resolvida em ordem a       x
Nota: Diz-se que a equação está resolvida em ordem a x porque a variável x está isolada
num dos membros da equação, neste caso no 1.º membro.



                                y                      2 x + 2 y = 12 ⇔
            Perímetro 12 cm
                                                    ⇔ 2 y = 12 − 2 x ⇔
                 x                                        12 − 2 x
                                                    ⇔y=             ⇔
                                                              2
                     Resolvida em ordem a y.        ⇔ y = 6− x

  Qual o interesse de resolver uma equação em ordem a uma das variáveis?

  Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento?

  Ora, aqui interessa resolver equação em ordem a   x (é a incógnita, o valor desconhecido)
       Assim, é muito fácil dar a resposta.
                                              x = 6− y          O comprimento é 4.
                                              x = 6−2 ⇔ x = 4
Mas, se a pergunta fosse:

   Sabendo que o comprimento,    x , do rectângulo é 3, qual é a largura?
   Neste caso já interessava resolver a equação em ordem a y.

          y = 6− x
         y = 6−3 ⇔ y = 3
Se se pretende determinar o comprimento do rectângulo, então, interessa
resolver a equação em ordem a x. Por outro lado, se se quisesse saber a
sua largura, neste caso, já interessava resolver a equação em ordem a y.

Conclusão:
Uma equação literal resolve-se em ordem a uma das letras (variável)
que se considera a incógnita (valor desconhecido). As outras letras
funcionam como números (valores dados).
As regras já conhecidas para resolver equações são também aplicáveis
na resolução de equações literais.
Assim, a equação tem uma
    A=100 m2       l   infinidade de soluções.
      c
c = 100 → l = 1         c × l = 100   mas,


c = 50 → l = 2         c × l = 100    mas,


  c = 25 → l = 4       c × l = 100    mas,


c = 20 → l = 5          c × l = 100    mas,


 c = 12,5 → l = 8      c × l = 100    …
Equações do 1.º grau com duas incógnitas.

                    ax+by=c;        a, b e c
  As soluções desta equação são, geralmente, pares ordenados de
  números.

   x+2y=9              S=(1,4)           Uma solução



                       S=(0, 9/2)             Outra solução


  Quantas soluções têm?

 Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0,

  b=0 e c    ).                                        Cuidado:
                                                       No contexto de
Relacionar com as funções afins, reta,                 problemas nem sempre
todos os pontos que estão sobre a                      todas as soluções
reta são soluções da equação.                          servem. Dar ex.
Exemplo II

           A equação E=mc2 em que:
           E- energia
           m- quantidade de matéria
           c- velocidade da luz

Descoberta de Einstein apontava para a possibilidade de se obterem grandes
quantidades de energia a partir de pequenas quantidades de matéria. A bomba
atómica é um dos frutos desta equação.

Resolve a equação em ordem a m e depois em ordem a c.
                                                       E
E = mc ⇔
       2
                                           E = mc ⇔ c = ⇔
                                                   2      2

                                                       m
  E mc 2    E
⇔ 2 = 2 ⇔m= 2                                   E
 c    c    c                               ⇔c=±
                                                m

           Resolvida em ordem a m.
                                      Resolvida em ordem a c.
Exemplo III

A fórmula V=c.l.h serve para determinar o volume de uma caixa de cereais.

Resolve a equação em ordem a c.

Neste caso, c é a incógnita.

Para isolar c divide-se ambos os membros por lh e depois simplifica-se.


                V c.l.h
                   =     ⇔
                lh    lh
               ⇔ c =V
                      lh
Exemplo IV

Resolve a equação em ordem a h.

Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem
números.

                                                 A=
                                                    ( B + b) × h
A área de um trapézio é dada pela fórmula
                                                             2

                      B+b                               2A
                A=        × h ⇔ 2 A = ( B + b) h ⇔ h =
                       2                               B+b
    Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B
    (base maior) , b (base menor) e A (área). Por exemplo:
    Determina h, sabendo que A=10 cm2, B=4 cm e b=1 cm.

                                                         2 ×10
                                                      h=       = 4 cm
                                                         4 +1
Exercícios:

                                      5           y
 2. Resolve em ordem a x, a equação     ( y − 1) = + x
                                      3           2
  Neste caso a incógnita é x. A letra y “funciona” como um número.

  5           y
    ( y − 1) = + x ⇔                    1.º Tiram-se os parênteses
  3           2                         2.º Tiram-se os denominadores
   5       5   y
 ⇔ y− = + x ⇔                           3.º Isolam-se os termos com a incógnita
   3       3   2 ( ×6 )                 (pretendida) num dos membros
      ( ×2 )   ( ×2 )   ( ×3 )
                                        4.º Reduzem-se os termos semelhantes
 ⇔ 10 y − 10 = 3 y + 6 x ⇔
                                  5.º Determina-se o valor da incógnita,
 ⇔ 6 x = 7 y − 10 ⇔               quando são dados os valores das outras
                                   variáveis.
        7 y − 10
 ⇔x=               A equação está resolvida em ordem a x.
            6
5           y
2. Resolver a mesma equação em ordem a y.
                                                ( y − 1) = + x
                                              3           2
                5           y
                  ( y − 1) = + x ⇔
                3           2
                 5      5    y
               ⇔ y− = + x ⇔
                 3      3    2 ( ×6 )
                   ( ×2 )   ( ×2 )   ( ×3 )
               ⇔ 10 y − 10 = 3 y + 6 x ⇔
               ⇔ 10 y − 3 y = 10 + 6 x ⇔
               ⇔ 7 y = 10 + 6 x ⇔
                     10 + 6 x
               ⇔ y=
                         7
3.                   C F − 32
Em Física, a fórmula   =          estabelece a correspondência entre C (graus
                     5   9
Celsius) e F (graus Fahrenheirt). A Isabel está doente. A sua temperatura é

102,2ºF. Qual é a sua temperatura em ºC?

Processo 1:   Substitui-se F por 102,2 e resolve-se a equação em ordem a C.

 C 102,2 − 32   C 70,2
   =          ⇔   =    ⇔ 9C = 351 ⇔ C = 39
 5     9        5   9
                         ( ×9 )   ( ×5 )

Processo 2: Começa-se por resolver a equação em ordem a C.

 C F − 32                        5 F − 160
   =      = 9C = 5 F − 160 ⇔ C =
 5   9                               9
     Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas:

   5 ×102,2 − 160
C=                = 39              R.: A Isabel tem de temperatura 39 ºC.
         9
Tarefa 3 página137
 139 exercício 9
      10 e 11

Equações literais

  • 1.
  • 2.
    Observa as equaçõesseguintes: 3x + 7 y = 1 3x + 7 z = y 3x + 7 = 0 As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal. Então, qual será a definição de equação literal? Equações literais – são equações que têm mais do que uma variável, isto é, pelo menos 2 incógnitas.
  • 3.
    Exemplos de equaçõesliterais: •A equação y = 6 x + 2 que representa uma reta não vertical (função afim) •A equação y = 6x que representa uma reta que passa na origem do referencial (função linear). (equações do 1.º grau com duas incógnitas) Geogebra Quantas soluções têm? •As fórmulas: b×h ( B + b) × h A = l2 A= A= 2 2 que representam, respetivamente, as áreas do quadrado, do triângulo e do trapézio. • A equação da relatividade E = mc2. •A fórmula do teorema de Pitágoras a = b + c 2 2 2
  • 4.
    Como resolver equaçõesliterais? As regras para resolver equações, também se aplicam à resolução de uma equação literal, em ordem a qualquer uma das letras que nela figuram. Exemplo I: Observa a figura: Perímetro 12 cm y A figura sugere a seguinte equação, 2 x + 2 y = 12 x Como a equação tem duas variáveis x e y, podemos resolvê-la em ordem a x ou em ordem a y, isto é: Nota: Quando uma letra é 2 x + 2 y = 12 ⇔ a incógnita, as outras letras ⇔ 2 x = 12 − 2 y ⇔ funcionam como se fossem números. 12 − 2 y ⇔x= ⇔ 2 ⇔ x = 6− y Resolvida em ordem a x
  • 5.
    Nota: Diz-se quea equação está resolvida em ordem a x porque a variável x está isolada num dos membros da equação, neste caso no 1.º membro. y 2 x + 2 y = 12 ⇔ Perímetro 12 cm ⇔ 2 y = 12 − 2 x ⇔ x 12 − 2 x ⇔y= ⇔ 2 Resolvida em ordem a y. ⇔ y = 6− x Qual o interesse de resolver uma equação em ordem a uma das variáveis? Sabendo que a largura, y, do rectângulo é 2, qual é o comprimento? Ora, aqui interessa resolver equação em ordem a x (é a incógnita, o valor desconhecido) Assim, é muito fácil dar a resposta. x = 6− y O comprimento é 4. x = 6−2 ⇔ x = 4
  • 6.
    Mas, se apergunta fosse: Sabendo que o comprimento, x , do rectângulo é 3, qual é a largura? Neste caso já interessava resolver a equação em ordem a y. y = 6− x y = 6−3 ⇔ y = 3 Se se pretende determinar o comprimento do rectângulo, então, interessa resolver a equação em ordem a x. Por outro lado, se se quisesse saber a sua largura, neste caso, já interessava resolver a equação em ordem a y. Conclusão: Uma equação literal resolve-se em ordem a uma das letras (variável) que se considera a incógnita (valor desconhecido). As outras letras funcionam como números (valores dados). As regras já conhecidas para resolver equações são também aplicáveis na resolução de equações literais.
  • 7.
    Assim, a equaçãotem uma A=100 m2 l infinidade de soluções. c c = 100 → l = 1 c × l = 100 mas, c = 50 → l = 2 c × l = 100 mas, c = 25 → l = 4 c × l = 100 mas, c = 20 → l = 5 c × l = 100 mas, c = 12,5 → l = 8 c × l = 100 …
  • 8.
    Equações do 1.ºgrau com duas incógnitas. ax+by=c; a, b e c As soluções desta equação são, geralmente, pares ordenados de números. x+2y=9 S=(1,4) Uma solução S=(0, 9/2) Outra solução Quantas soluções têm? Estas equações têm uma infinidade de soluções ou nenhuma (no caso de a=0, b=0 e c ). Cuidado: No contexto de Relacionar com as funções afins, reta, problemas nem sempre todos os pontos que estão sobre a todas as soluções reta são soluções da equação. servem. Dar ex.
  • 9.
    Exemplo II A equação E=mc2 em que: E- energia m- quantidade de matéria c- velocidade da luz Descoberta de Einstein apontava para a possibilidade de se obterem grandes quantidades de energia a partir de pequenas quantidades de matéria. A bomba atómica é um dos frutos desta equação. Resolve a equação em ordem a m e depois em ordem a c. E E = mc ⇔ 2 E = mc ⇔ c = ⇔ 2 2 m E mc 2 E ⇔ 2 = 2 ⇔m= 2 E c c c ⇔c=± m Resolvida em ordem a m. Resolvida em ordem a c.
  • 10.
    Exemplo III A fórmulaV=c.l.h serve para determinar o volume de uma caixa de cereais. Resolve a equação em ordem a c. Neste caso, c é a incógnita. Para isolar c divide-se ambos os membros por lh e depois simplifica-se. V c.l.h = ⇔ lh lh ⇔ c =V lh
  • 11.
    Exemplo IV Resolve aequação em ordem a h. Neste caso, a incógnita é a letra h, as outras letras funcionam como se fossem números. A= ( B + b) × h A área de um trapézio é dada pela fórmula 2 B+b 2A A= × h ⇔ 2 A = ( B + b) h ⇔ h = 2 B+b Se pretender saber quanto é a altura do trapézio é necessário conhecer os valores de B (base maior) , b (base menor) e A (área). Por exemplo: Determina h, sabendo que A=10 cm2, B=4 cm e b=1 cm. 2 ×10 h= = 4 cm 4 +1
  • 12.
    Exercícios: 5 y 2. Resolve em ordem a x, a equação ( y − 1) = + x 3 2 Neste caso a incógnita é x. A letra y “funciona” como um número. 5 y ( y − 1) = + x ⇔ 1.º Tiram-se os parênteses 3 2 2.º Tiram-se os denominadores 5 5 y ⇔ y− = + x ⇔ 3.º Isolam-se os termos com a incógnita 3 3 2 ( ×6 ) (pretendida) num dos membros ( ×2 ) ( ×2 ) ( ×3 ) 4.º Reduzem-se os termos semelhantes ⇔ 10 y − 10 = 3 y + 6 x ⇔ 5.º Determina-se o valor da incógnita, ⇔ 6 x = 7 y − 10 ⇔ quando são dados os valores das outras variáveis. 7 y − 10 ⇔x= A equação está resolvida em ordem a x. 6
  • 13.
    5 y 2. Resolver a mesma equação em ordem a y. ( y − 1) = + x 3 2 5 y ( y − 1) = + x ⇔ 3 2 5 5 y ⇔ y− = + x ⇔ 3 3 2 ( ×6 ) ( ×2 ) ( ×2 ) ( ×3 ) ⇔ 10 y − 10 = 3 y + 6 x ⇔ ⇔ 10 y − 3 y = 10 + 6 x ⇔ ⇔ 7 y = 10 + 6 x ⇔ 10 + 6 x ⇔ y= 7
  • 14.
    3. C F − 32 Em Física, a fórmula = estabelece a correspondência entre C (graus 5 9 Celsius) e F (graus Fahrenheirt). A Isabel está doente. A sua temperatura é 102,2ºF. Qual é a sua temperatura em ºC? Processo 1: Substitui-se F por 102,2 e resolve-se a equação em ordem a C. C 102,2 − 32 C 70,2 = ⇔ = ⇔ 9C = 351 ⇔ C = 39 5 9 5 9 ( ×9 ) ( ×5 ) Processo 2: Começa-se por resolver a equação em ordem a C. C F − 32 5 F − 160 = = 9C = 5 F − 160 ⇔ C = 5 9 9 Na fórmula obtida substitui-se F por 102,2 e efectuam-se as contas: 5 ×102,2 − 160 C= = 39 R.: A Isabel tem de temperatura 39 ºC. 9
  • 15.
    Tarefa 3 página137 139 exercício 9 10 e 11