SlideShare uma empresa Scribd logo
Teorema Fundamental da
Trigonometria
1cossen 22
=θ+θ
Demonstração ...
)θ
1 cos
sen
1
-1
-1
0
sen θ
cos θ
θ
·
Continuação...
)θ
1 cos
sen
1
-1
-1
0
sen θ
cos θ
1
Continuação...
)θ
sen θ
cos θ
1
Utilizando o teorema de Pitágoras h2
= c2
+ c2
, temos :
1cossen 22
=θ+θ
C M P Q D
Relações Trigonométricas no
Triângulo Retângulo
)θ
Cateto Adjacente
CatetoOposto
Hipotenusa
Continuação ...
Cotangente de θ
Secante de θ
Cossecante de θ
Tangente de θ
Cosseno de θ
Seno de θ
Relação no Triângulo
Retângulo
Ente
Trigonométrico
HI
CO
sen =θ
HI
CA
cos =θ
CO
HI
sen
1
seccos =
θ
=θ
CA
CO
tg =θ
CA
HI
cos
1
sec =
θ
=θ
CO
CA
tg
1
gcot =
θ
=θ
Na Circunferência Trigonométrica
)θ
cos
sen
0
sen θ
cos θ
·
tg
tg θ
Continuação ...
)θ
0
·
cotgcotg θ
secante θ
cossec θ
Arcos Notáveis
30°150°
210° 330°
45°135°
225° 315°
60°120°
240° 300°
cos
sen
0
tg
90°
180°
270°
0°/360°
arco 0° 30° 45° 60° 90° 180° 270° 360°
rad 0
6
π
4
π
3
π
2
π
π
3
2π
π2
seno 0
2
1
2
2
2
3
1 0 - 1 0
cosseno 1
2
3
2
2
2
1
0 - 1 0 1
tangente
θ
θ
cos
sen 0
3
3
1 3 - - - 0 - - - 0
Tabela de Entes Trigonométricos
Vamos pensar . . .
Que tal fazermos um teste para verificação do que foi
apresentado?
Observem a figura ao lado
1) Em relação ao
ângulo α, podemos
dizer que o sen α vale:
a) b/c
b) a/c
c) c/b
d) c/a
e) a/b
c
b
hip
.o.c
sen ==α
2) Em relação ao
ângulo α, podemos
dizer que o cos α vale:
a) b/c
b) a/c
c) c/b
d) c/a
e) a/b
c
a
hip
.a.c
cos ==α
3) Em relação ao
ângulo α, podemos
dizer que a tg α vale:
a) b/a
b) b/c
c) c/b
d) a/b
e) a/c
a
b
.a.c
.o.c
tg ==α
4) Em relação ao
ângulo α, podemos
dizer que a cotg α
vale:
a) b/a
b) b/c
c) c/b
d) a/b
e) a/c b
a
.o.c
.a.c
gcot ==α
5) Em relação ao
ângulo α, podemos
dizer que tg α .cotg α
vale:
a) 1/a
b) 1/c
c) 1/b
d) 0
e) 1 1
.o.c
.a.c
.
.a.c
.o.c
gcot.tg
=
αα
6) Se a = 3b, podemos
dizer então, que
sen2
α + cos2
α vale:
a) b2
/ a2
b) 9c2
/ b2
c) 0
d) 1
e) (c2
+ b2
) / 9a2
Pelo teorema fundamental da
trigonometria, temos que:
sen2
θ + cos2
θ = 1
portanto,
7) Em relação ao
ângulo α, podemos
dizer que sec2
α - 1
vale:
a) tg2
α
b) cotg2
α
c) - 1
d) 0
e) 1 ( )
α
=α⇒





α
=α
α
=α
2
2
2
2
cos
1
sec
cos
1
sec
olog,
cos
1
sec
α=−α⇒
α
α
=
α
α−
⇒−
α
⇒−α 22
2
2
2
2
2
2
tg1sec
cos
sen
cos
cos1
1
cos
1
1sec
( )
α
α
=α⇒





α
α
=α
α
α
=α
2
2
2
2
2
cos
sen
tg
cos
sen
tg
olog,
cos
sen
tg
α−=α
=α+α
22
22
cos1sen
1cossen
α=−α 22
tg1sec
8) Em relação ao
ângulo α, podemos
dizer que cossec2
α - 1
vale:
a) tg2
α
b) cotg2
α
c) - 1
d) 0
e) 1
( )
α
=α⇒





α
=α
α
=α
2
2
2
2
sen
1
seccos
sen
1
seccos
olog,
sen
1
seccos
α=−α⇒
α
α
=
α
α−
⇒−
α
⇒−α 22
2
2
2
2
2
2
gcot1seccos
sen
cos
sen
sen1
1
sen
1
1seccos
( )
α
α
=α⇒





α
α
=α
α
α
=α
2
2
2
2
2
sen
cos
gcot
sen
cos
gcot
olog,
sen
cos
gcot
α−=α
=α+α
22
22
sen1cos
1cossen
α=−α 22
gcot1seccos
9) Se sen α = b/c,
então, calculando o
valor de
chegaremos a:
a) a/c
b) b/c
c) a/b
d) b/a
e) 1






α
+α
α−
α
α
=






α
+α−α=
cos
1cos
.)cos1(.
sen
cos
y
cos
1
1.)cos1(.gcoty α−=α
=α+α
22
22
cos1sen
1cossen






α
+α−α=
cos
1
1.)cos1(.gcoty
( )
)coscos1(cos.
sen
1
y
1cos.)cos1(.
sen
1
y
2
α−α−+α
α
=
+αα−
α
=
)cos1(.
sen
1
y 2
α−
α
=
α
α
= 2
sen.
sen
1
y
c
b
y
seny
=
α=
Voltando
para a parte teórica...
Lei dos Senos
Seja um triângulo ABC qualquer
temos :
∧∧∧
==
Csen
c
Bsen
b
Asen
a
) (
^
A
^
C
^
B
A B
C
a
c
b
Lei dos Cossenos
Seja um triângulo ABC qualquer
temos :
∧
∧
∧
−+=
−+=
−+=
Ccosba2bac
ouBcosca2cab
ouAcoscb2cba
222
222
222
) (
^
A
^
C
^
B
A B
C
a
c
b
Continuação ...
Curiosidade : Quando um dos ângulos do triângulo é
reto, por exemplo, Â= 90°, temos :
°−+= 90coscb2cba 222
Sabe-se que cos 90° = 0, logo ...
0cb2cba 222
−+=
Temos, portanto ... 222
cba += Teorema de Pitágoras
Gráficos das funções trigonométricas
sen x
y
x
•
•
•
•
•
•
•
•
• •0° 540° 720°450°
630°
360°
270°
180°
-180° -90°
• 90°
1
-1
Continuação ...
cos x
y
x•
•
• •
•
•
• •
•
•
•
0°
540°
720°450° 630°360°270°
180°-180°
-90° 90°
1
-1
Continuação ...
tg x
y
x• • ••• • • • •0° 360°
-90° 90°
180°
270° 450°
540°
630°
Continuação ...
y
x
• •
•
•
•
•
•
• • •0° 540° 720°450°
630°
360°
270°
180°
-180° -90°
• 90°
1
-1
cossec x
Continuação ...
•
•
• •
•
•
• •
•
•
•
0°
540°
720°450° 630°360°270°
180°-180°
-90° 90°
sec x
y
x
1
-1
Continuação ...
cotg x
y
x
• • ••• • • • •0° 360°
90°
180°
270° 450°
540°
630°
720°
TRIGONOMETRIA APLICADA
• Modelo matemático que indica ao número de horas do dia,
com luz solar, de uma determinada cidade norte americana,
“t” dias após 1º de janeiro.






−
π
+= )80t(
365
2
sen8,212)t(L
Fonte : J.Stewart – Cálculo vol. I – Pág. 34
Continuação ...
dt
2
t
sen)x(S
x
0
2
∫ 




 π
=
Fonte : J.Stewart – Cálculo vol. I – Pág. 394
•Função de Fresnel, assim chamada em homenagem ao
físico francês Augustin Fresnel (1788-1827), famoso por
seus trabalhos em ótica. Esta função foi primeiramente
apresentada num trabalho sobre difração de ondas de luz de
Fresnel, porém recentemente foi aplicado no planejamento
de auto-estradas.
Continuação ...
• Integração por Substituição trigonométrica
Caso Radical Substit.
Trigonométrica
Transformada Trigonometria no
Triângulo
Retângulo
I 222
.uba − θsen.
b
a
u = θθ cos.sen1. 2
aa =−
CA
CO
tg =θ
II 222
.uba + θtg
b
a
u .= θθ sec.1. 2
atga =+
HI
CA
=θcos
III 222
. aub − θsec.
b
a
u = θθ tgaa .1sec. 2
=−
HI
CO
=θsen
Demonstrando o Caso I ...
=−=−=−=





−=− )sen1.(sensen.sen. 222222
2
2
22
2
22222
θθθθ aaa
b
a
ba
b
a
bauba
==−= θθ 22
cossen1. aa θcos.a C M P Q D
Trigonometria
Algumas Aplicações
Parte Prática
O exemplo clássico da Sombra
Para que possamos medir (aproximadamente)
a altura de um prédio, sem a necessidade de subir
ao terraço, ou utilizar equipamentos sofisticados,
seria necessário somente 2 elementos.
São eles: uma distância
um ângulo
Observe a seguir . . .
hd.tg
d
h
tg
.a.c
.o.c
tg
=α
=α⇒=α
temos que:
portanto: α= tg.dh
Conhecendo a distância d que
vale 50 metros e o ângulo α
que vale 30°, podemos dizer
então que:
metros8675,28h
95773502691,0.50h
30tg.50h
tg.dh
=
=
°=
α=
Exemplo 1
A inclinação de uma rampa
Uma rampa com inclinação constante, (como
a que existe em Brasília) tem 6 metros de
altura na sua parte mais elevada. Um
engenheiro começou a subir, e nota que após
ter caminhado 16,4 metros sobre a rampa está
a 2,0 metros de altura em relação ao solo. Será
que este engenheiro somente com esses dados
e uma calculadora científica conseguiria
determinar o comprimento total dessa rampa e
sua inclinação em relação ao solo?
Como poderíamos resolver essa situação?
Como sugestão, faremos um “desenho” do que
representa essa situação.
Observemos:
6 metros
16,4 metros
2 metros
θ
Comprimento total da rampa
solo
6 metros
16,4 metros
2 metros
θ
Observemos o triângulo retângulo em destaque . . .
θ 2 metros
16,4 metros
hip c.o.
c.a.
Temos em relação
ao ângulo θ:
hip = 16,4 metros
c.o. = 2 metros
θ 2 metros
16,4 metros
hip c.o.
c.a.
Como:
hip = 16,4 metros
c.o. = 2 metros
121219512195,0
4,16
2
hip
.o.c
sen ===θ
Obs.: quando dizemos que arcsen α = 1/2 , podemos
transformar essa igualdade em uma pergunta: “qual é o arco,
cujo seno vale 1/2?”, a resposta seria dizer que α = 30°.
Em nosso exercício, chegamos a conclusão que:
sen θ = 0,121951219512, logo podemos encontrar o
ângulo θ, com o auxílio da calculadora que
normalmente utiliza as funções ASIN ou SIN-1
, então,
devemos digitar 0,121951219512 e a opção acima de
sua calculadora.
Se o processo foi realizado corretamente, deverá
ser encontrado o valor 7,00472640907, que iremos
considerar como aproximadamente 7°.
Encontramos assim, a inclinação da rampa!
2,49
121219512195,0
6
7sen
6
sen
o.c
hip
sen
o.c
hip.o.chip.sen
hip
.o.c
sen
==
°
=
θ
=
θ
=⇒=θ⇒=θ
6 metros
θ = 7°
θ 2 metros
16,4 metros
hip c.o.
c.a.
Notamos que os triângulos abaixo são semelhantes,
portanto, podemos dizer que θ é válido para ambos
Como:
Chegamos a conclusão que o
comprimento total da rampa é 49,2 metros
Exemplo 2
Mecânica Geral
ou Trigonometria?
Os conceitos trigonométricos aparecem com muita freqüência no
estudo da Física, Topografia, Astronomia e de muitos outros
assuntos.
Observemos os exemplos a seguir:
Em relação ao sistema de forças representado na figura, onde F1 =
20N, F2 = 100N, F3 = 40N e F4 = 10N, você seria capaz de determinar
a intensidade da resultante do sistema e o ângulo que essa
resultante forma com o eixo das abscissas (x)?
Em primeiro lugar, teremos que fazer as projeções de 2F
→
nos eixos das abscissas e das
ordenadas, obtendo assim, respectivamente os componentes )x(2F
→
e )y(2F
→
.
Analogamente, encontraremos as projeções de 3F
→
, encontrando os componentes )x(3F
→
e )y(3F
→
.
A resultante relativa ao eixo das abscissas 




 →
)x(R
é obtida
da seguinte maneira:
)x(31)x(2)x( FFFR
→→→→
−+=







°=⇔=°==°⇒=α
°=⇔=°==°⇒=α
60cos.FFFF.60cos
F
F
60cos.
hip
a.c
cos
45cos.FFFF.45cos
F
F
45cos.
hip
a.c
cos
Como
3)x(3)x(33
3
)x(3
2)x(2)x(22
2
)x(2



=⇒=°=
=⇒=°=
N20F5,0.4060cos.FF
N70F70,0.10045cos.FF
totanPor
)x(33)x(3
)x(22)x(2
)x(31)x(2)x( FFFR
→→→→
−+=
N70R
202070R
)x(
)x(
=
−+=
→
→
A resultante relativa ao eixo das abscissas 




 →
)y(R
é obtida
da seguinte maneira:
)y(34)y(2)y( FFFR
→→→→
−−=







°=⇔=°==°⇒=α
°=⇔=°==°⇒=α
60sen.FFFF.60sen
F
F
60sen.
hip
o.c
sen
45sen.FFFF.45sen
F
F
45sen.
hip
o.c
sen
Como
3)y(3)y(33
3
)y(3
2)y(2)y(22
2
)y(2



=⇒=°=
=⇒=°=
N4,34F86,0.4060sen.FF
N70F70,0.10045sen.FF
totanPor
)y(23)y(3
)y(22)y(2
)y(34)y(2)y( FFFR
→→→→
−−=
N6,25R
4,341070R
)y(
)y(
=
−−=
→
→
Colocando )x(R
→
e )y(R
→
, nos eixos das abscissas e das
ordenadas, respectivamente,
Percebemos que a figura formada pelas forças é um
triângulo retângulo, em que sua hipotenusa é a Força
Resultante
→
R , )x(R
→
é o cateto adjacente a αe )y(R
→
o
cateto oposto a α, então, vale o teorema de Pitágoras para
calcularmos o valor de
→
R .
( ) ( )
N53,74R
36,5555R
36,5555R
36,6554900R
6,2570R
RRR
cch
2
2
22
2
2
)y(
2
)x(
2
222
=
=
=





+=





+=











+





=





+=
→
→
→
→
→
→→→
Para o cálculo do ângulo α, temos:
3657,0
70
6,25
R
R
.a.c
.o.c
tg
)x(
)y(
====α →
→
3657,0tg =α
Esse é o valor da tangente do ângulo α.
Para calcularmos o valor do ângulo α,
temos que encontrar o arctg α, então:
°≅α
=α=α
20
3657,0arctgarctg
Concluímos então que a Resultante N53,74R=
→
e forma
um ângulo °≅α 20 com o eixo x.
Desafio !
Um alpinista muito ágil, percorre um trajeto passando pelos
pontos A e B. Não se sabe ao certo o que ocorreu, mas ele
conseguiu com o material apropriado chegar a conclusão das
medidas abaixo mencionadas. Quando chega até a árvore ele
percebe que o único caminho que o levará até o ponto C é
escalando-a. (a altura da árvore é representada por h - despreze a
largura do tronco)
Se sua velocidade média é de 0,2 m/s, quantos minutos ele
demorou para sair do ponto A e chegar ao ponto C? ( )7,13 =
Solução:
Resumidamente, temos o
triângulo ao lado que
representa nosso desafio.
)II(y.3h
y.60tghhy.60tg
y
h
.a.c
.o.c
60tg
)I()y20(.
3
3
h
)y20(.30tghh)y20(.30tg
)y20(
h
.a.c
.o.c
30tg
=
°=⇒=°⇒==°
+=
+°=⇒=+°⇒
+
==°
metros10y
y220yy320y.3)y20(
y.3.3)y20(.3y.3)y20(.
3
3
y.3h)II()y20(.
3
3
h)I(
=⇒
=⇒−=⇒=+⇒
=+⇒=+
=+=
Igualando o h das equações ( I ) e (II)
Como
metros17h
10.7,1h
y.3h
=
=
=
30 metros
17 metros para
subir a árvore
17 metros para
descer da árvore
Agora com o valor das medidas temos condição de determinar
quanto ele percorreu do ponto A até o ponto C, observe:
De A até C ele percorreu 30 + 17 + 17 = 64 metros
segundos20eutosmin5touutosmin333,5t
60
segundos320
tsegundos320
2,0
64
t
V
s
tst.V
t
s
V
=∆=∆
⇒=∆⇒==∆
∆
=∆⇒∆=∆⇒
∆
∆
=
v = 0,2 m/s

Mais conteúdo relacionado

PPTX
Sólidos Geométricos - 6º ano
PPT
Logaritmo-MATEMATICA.ppt
PDF
Exercícios Resolvidos: Teorema de Rolle
PPT
Polígonos
PPT
Cilindros (1)
PDF
Exercícios Resolvidos: Taxa relacionada
PDF
Jogo de sinais
PPTX
Círculo e Circunferência
Sólidos Geométricos - 6º ano
Logaritmo-MATEMATICA.ppt
Exercícios Resolvidos: Teorema de Rolle
Polígonos
Cilindros (1)
Exercícios Resolvidos: Taxa relacionada
Jogo de sinais
Círculo e Circunferência

Mais procurados (20)

PPT
Cilindros
PDF
Sequencias
PDF
MAT 2ª Série 3 º Bimestre Estudante.pdf
PDF
Exercicios resolvidos
PPS
Áreas de Figuras Planas
PDF
Tabela completa de derivadas e integrais
PPT
Triângulos
PPT
Matemática 6o ano num naturais
PPT
Polígonos..
PDF
1ª lista de exerc(monomios) 8º ano ilton bruno
PPTX
Notação cientifica
PPT
Principio Fundamental Da Contagem
PPT
Área e Volume
PDF
Ciclo de born haber
PPTX
Movimento uniforme
PDF
Probabilidades
PDF
PDF
Exercicios resolvidos hidraulica
PPT
âNgulos na circunferência
PPTX
Regra de três simples e composta
Cilindros
Sequencias
MAT 2ª Série 3 º Bimestre Estudante.pdf
Exercicios resolvidos
Áreas de Figuras Planas
Tabela completa de derivadas e integrais
Triângulos
Matemática 6o ano num naturais
Polígonos..
1ª lista de exerc(monomios) 8º ano ilton bruno
Notação cientifica
Principio Fundamental Da Contagem
Área e Volume
Ciclo de born haber
Movimento uniforme
Probabilidades
Exercicios resolvidos hidraulica
âNgulos na circunferência
Regra de três simples e composta
Anúncio

Semelhante a Trigonometria (20)

PPT
Ciclo trigonometrico
 
PPT
Relações trigonometricas fundamentais na matemática
PPTX
relaçõestrigonométricas no triângulo retângulo.ppt
PPT
Seno Cos Matematica Engenharia tigonométrica.ppt
PDF
Base trigonometria 001
PDF
Lista de exercícios para a prova sub-stitutiva - trigonometria e números com...
PDF
Trigonometria
PDF
Trigonometria
PDF
Trigonometria básica
PDF
Prova de Matemática fuzileiro naval 2011
DOCX
Proxima postagem
PDF
Cinemática
PPTX
Aula 3 mat em
PDF
Glauco exercicios resolvidos (1)
PPTX
Trigonometria ciclo e relações
 
DOCX
Equações e inequações trigonométricas
DOC
Trigonometria fórmls exc
PDF
Fisica 1EM 1BIM
PPTX
Introdução à Trigonometria (adaptação RIVED)
PDF
Www.uff.br gma informacoes disciplinas_calc 03 -a- 2012-2_lista 6
Ciclo trigonometrico
 
Relações trigonometricas fundamentais na matemática
relaçõestrigonométricas no triângulo retângulo.ppt
Seno Cos Matematica Engenharia tigonométrica.ppt
Base trigonometria 001
Lista de exercícios para a prova sub-stitutiva - trigonometria e números com...
Trigonometria
Trigonometria
Trigonometria básica
Prova de Matemática fuzileiro naval 2011
Proxima postagem
Cinemática
Aula 3 mat em
Glauco exercicios resolvidos (1)
Trigonometria ciclo e relações
 
Equações e inequações trigonométricas
Trigonometria fórmls exc
Fisica 1EM 1BIM
Introdução à Trigonometria (adaptação RIVED)
Www.uff.br gma informacoes disciplinas_calc 03 -a- 2012-2_lista 6
Anúncio

Mais de Murilo Cretuchi de Oliveira (15)

PPS
Sinais do seno_cosseno_e_tangente
PPS
Seno e cosseno_dos_arcos_notáveis
PPS
Seno cosseno e_tangente_de_um_arco
PPS
Ciclo trigonometrico
PPS
Arcos trigonométricos notáveis
PPS
Arco trigonometrico
PPS
Intersecção de prismas
PPS
Intersecção de pirâmides
PPS
Intersecção de cubos
PPS
Geometria solidos geometricos cortes
PPS
Intersecção de sólidos de revolução
PPS
Angulos e Triângulos
PPS
Polígonos regulares
PPS
Arco trigonometrico
Sinais do seno_cosseno_e_tangente
Seno e cosseno_dos_arcos_notáveis
Seno cosseno e_tangente_de_um_arco
Ciclo trigonometrico
Arcos trigonométricos notáveis
Arco trigonometrico
Intersecção de prismas
Intersecção de pirâmides
Intersecção de cubos
Geometria solidos geometricos cortes
Intersecção de sólidos de revolução
Angulos e Triângulos
Polígonos regulares
Arco trigonometrico

Último (20)

PPTX
INDÚSTRIA_ Histórico da industrialização.pptx
PDF
CARTÕES DIA DOS ESTUDANTES MORANGO DO AMOR.pdf
PPTX
A História da Europa na Baixa Idade Média.pptx
PDF
Morango do Amor - texto ilustrado para trabalhar Dia do Estudante
PPTX
HISTÓRIA DO BRASIL - anos de Democracia.pptx
PPTX
Revolução Industrial - Aula Expositiva - 3U4.pptx
PPTX
brasilcolnia2-101027184359-phpapp02.pptx
PDF
aulademeiodetransporteemlibras-120304202807-phpapp01_removed.pdf
DOCX
Mapa das Américas Colonial Completo.docx
PDF
Cópia de Analgésicos e antitérmicos.pdf
PDF
A relação entre funções executivas e desempenho acadêmico em crianças com Tra...
DOCX
Planilha Campos de Experiência 2025- Ed. Infantil Trimestral.docx
PPT
História e Evolução dos Computadores domésticos
PPTX
biossegurança e segurança no trabalho (6).pptx
PDF
Estudo da Dor in neurofisiologia dor.pdf
PDF
Ementa 2 semestre PEI Orientação de estudo
PDF
FLUXOGRAMA CLASSE lll - Acesso estritamente proximal.pdf
PDF
COMO OS CONTOS DE FADAS REFLETEM ARQUÉTIPOS_MEDOS E DESEJOS DO INCONSCIENTE H...
PPTX
Grandes problemas da humanidade: pobreza, desemprego e desigualdade e sua rel...
PPTX
Lição 8 EBD.pptxtudopossonaquelequemimfortalece
INDÚSTRIA_ Histórico da industrialização.pptx
CARTÕES DIA DOS ESTUDANTES MORANGO DO AMOR.pdf
A História da Europa na Baixa Idade Média.pptx
Morango do Amor - texto ilustrado para trabalhar Dia do Estudante
HISTÓRIA DO BRASIL - anos de Democracia.pptx
Revolução Industrial - Aula Expositiva - 3U4.pptx
brasilcolnia2-101027184359-phpapp02.pptx
aulademeiodetransporteemlibras-120304202807-phpapp01_removed.pdf
Mapa das Américas Colonial Completo.docx
Cópia de Analgésicos e antitérmicos.pdf
A relação entre funções executivas e desempenho acadêmico em crianças com Tra...
Planilha Campos de Experiência 2025- Ed. Infantil Trimestral.docx
História e Evolução dos Computadores domésticos
biossegurança e segurança no trabalho (6).pptx
Estudo da Dor in neurofisiologia dor.pdf
Ementa 2 semestre PEI Orientação de estudo
FLUXOGRAMA CLASSE lll - Acesso estritamente proximal.pdf
COMO OS CONTOS DE FADAS REFLETEM ARQUÉTIPOS_MEDOS E DESEJOS DO INCONSCIENTE H...
Grandes problemas da humanidade: pobreza, desemprego e desigualdade e sua rel...
Lição 8 EBD.pptxtudopossonaquelequemimfortalece

Trigonometria

  • 4. Continuação... )θ sen θ cos θ 1 Utilizando o teorema de Pitágoras h2 = c2 + c2 , temos : 1cossen 22 =θ+θ C M P Q D
  • 5. Relações Trigonométricas no Triângulo Retângulo )θ Cateto Adjacente CatetoOposto Hipotenusa
  • 6. Continuação ... Cotangente de θ Secante de θ Cossecante de θ Tangente de θ Cosseno de θ Seno de θ Relação no Triângulo Retângulo Ente Trigonométrico HI CO sen =θ HI CA cos =θ CO HI sen 1 seccos = θ =θ CA CO tg =θ CA HI cos 1 sec = θ =θ CO CA tg 1 gcot = θ =θ
  • 9. Arcos Notáveis 30°150° 210° 330° 45°135° 225° 315° 60°120° 240° 300° cos sen 0 tg 90° 180° 270° 0°/360°
  • 10. arco 0° 30° 45° 60° 90° 180° 270° 360° rad 0 6 π 4 π 3 π 2 π π 3 2π π2 seno 0 2 1 2 2 2 3 1 0 - 1 0 cosseno 1 2 3 2 2 2 1 0 - 1 0 1 tangente θ θ cos sen 0 3 3 1 3 - - - 0 - - - 0 Tabela de Entes Trigonométricos
  • 12. Que tal fazermos um teste para verificação do que foi apresentado? Observem a figura ao lado 1) Em relação ao ângulo α, podemos dizer que o sen α vale: a) b/c b) a/c c) c/b d) c/a e) a/b c b hip .o.c sen ==α
  • 13. 2) Em relação ao ângulo α, podemos dizer que o cos α vale: a) b/c b) a/c c) c/b d) c/a e) a/b c a hip .a.c cos ==α
  • 14. 3) Em relação ao ângulo α, podemos dizer que a tg α vale: a) b/a b) b/c c) c/b d) a/b e) a/c a b .a.c .o.c tg ==α
  • 15. 4) Em relação ao ângulo α, podemos dizer que a cotg α vale: a) b/a b) b/c c) c/b d) a/b e) a/c b a .o.c .a.c gcot ==α
  • 16. 5) Em relação ao ângulo α, podemos dizer que tg α .cotg α vale: a) 1/a b) 1/c c) 1/b d) 0 e) 1 1 .o.c .a.c . .a.c .o.c gcot.tg = αα
  • 17. 6) Se a = 3b, podemos dizer então, que sen2 α + cos2 α vale: a) b2 / a2 b) 9c2 / b2 c) 0 d) 1 e) (c2 + b2 ) / 9a2 Pelo teorema fundamental da trigonometria, temos que: sen2 θ + cos2 θ = 1 portanto,
  • 18. 7) Em relação ao ângulo α, podemos dizer que sec2 α - 1 vale: a) tg2 α b) cotg2 α c) - 1 d) 0 e) 1 ( ) α =α⇒      α =α α =α 2 2 2 2 cos 1 sec cos 1 sec olog, cos 1 sec α=−α⇒ α α = α α− ⇒− α ⇒−α 22 2 2 2 2 2 2 tg1sec cos sen cos cos1 1 cos 1 1sec ( ) α α =α⇒      α α =α α α =α 2 2 2 2 2 cos sen tg cos sen tg olog, cos sen tg α−=α =α+α 22 22 cos1sen 1cossen α=−α 22 tg1sec
  • 19. 8) Em relação ao ângulo α, podemos dizer que cossec2 α - 1 vale: a) tg2 α b) cotg2 α c) - 1 d) 0 e) 1 ( ) α =α⇒      α =α α =α 2 2 2 2 sen 1 seccos sen 1 seccos olog, sen 1 seccos α=−α⇒ α α = α α− ⇒− α ⇒−α 22 2 2 2 2 2 2 gcot1seccos sen cos sen sen1 1 sen 1 1seccos ( ) α α =α⇒      α α =α α α =α 2 2 2 2 2 sen cos gcot sen cos gcot olog, sen cos gcot α−=α =α+α 22 22 sen1cos 1cossen α=−α 22 gcot1seccos
  • 20. 9) Se sen α = b/c, então, calculando o valor de chegaremos a: a) a/c b) b/c c) a/b d) b/a e) 1       α +α α− α α =       α +α−α= cos 1cos .)cos1(. sen cos y cos 1 1.)cos1(.gcoty α−=α =α+α 22 22 cos1sen 1cossen       α +α−α= cos 1 1.)cos1(.gcoty ( ) )coscos1(cos. sen 1 y 1cos.)cos1(. sen 1 y 2 α−α−+α α = +αα− α = )cos1(. sen 1 y 2 α− α = α α = 2 sen. sen 1 y c b y seny = α=
  • 21. Voltando para a parte teórica...
  • 22. Lei dos Senos Seja um triângulo ABC qualquer temos : ∧∧∧ == Csen c Bsen b Asen a ) ( ^ A ^ C ^ B A B C a c b
  • 23. Lei dos Cossenos Seja um triângulo ABC qualquer temos : ∧ ∧ ∧ −+= −+= −+= Ccosba2bac ouBcosca2cab ouAcoscb2cba 222 222 222 ) ( ^ A ^ C ^ B A B C a c b
  • 24. Continuação ... Curiosidade : Quando um dos ângulos do triângulo é reto, por exemplo, Â= 90°, temos : °−+= 90coscb2cba 222 Sabe-se que cos 90° = 0, logo ... 0cb2cba 222 −+= Temos, portanto ... 222 cba += Teorema de Pitágoras
  • 25. Gráficos das funções trigonométricas sen x y x • • • • • • • • • •0° 540° 720°450° 630° 360° 270° 180° -180° -90° • 90° 1 -1
  • 26. Continuação ... cos x y x• • • • • • • • • • • 0° 540° 720°450° 630°360°270° 180°-180° -90° 90° 1 -1
  • 27. Continuação ... tg x y x• • ••• • • • •0° 360° -90° 90° 180° 270° 450° 540° 630°
  • 28. Continuação ... y x • • • • • • • • • •0° 540° 720°450° 630° 360° 270° 180° -180° -90° • 90° 1 -1 cossec x
  • 29. Continuação ... • • • • • • • • • • • 0° 540° 720°450° 630°360°270° 180°-180° -90° 90° sec x y x 1 -1
  • 30. Continuação ... cotg x y x • • ••• • • • •0° 360° 90° 180° 270° 450° 540° 630° 720°
  • 31. TRIGONOMETRIA APLICADA • Modelo matemático que indica ao número de horas do dia, com luz solar, de uma determinada cidade norte americana, “t” dias após 1º de janeiro.       − π += )80t( 365 2 sen8,212)t(L Fonte : J.Stewart – Cálculo vol. I – Pág. 34
  • 32. Continuação ... dt 2 t sen)x(S x 0 2 ∫       π = Fonte : J.Stewart – Cálculo vol. I – Pág. 394 •Função de Fresnel, assim chamada em homenagem ao físico francês Augustin Fresnel (1788-1827), famoso por seus trabalhos em ótica. Esta função foi primeiramente apresentada num trabalho sobre difração de ondas de luz de Fresnel, porém recentemente foi aplicado no planejamento de auto-estradas.
  • 33. Continuação ... • Integração por Substituição trigonométrica Caso Radical Substit. Trigonométrica Transformada Trigonometria no Triângulo Retângulo I 222 .uba − θsen. b a u = θθ cos.sen1. 2 aa =− CA CO tg =θ II 222 .uba + θtg b a u .= θθ sec.1. 2 atga =+ HI CA =θcos III 222 . aub − θsec. b a u = θθ tgaa .1sec. 2 =− HI CO =θsen Demonstrando o Caso I ... =−=−=−=      −=− )sen1.(sensen.sen. 222222 2 2 22 2 22222 θθθθ aaa b a ba b a bauba ==−= θθ 22 cossen1. aa θcos.a C M P Q D
  • 35. Parte Prática O exemplo clássico da Sombra Para que possamos medir (aproximadamente) a altura de um prédio, sem a necessidade de subir ao terraço, ou utilizar equipamentos sofisticados, seria necessário somente 2 elementos. São eles: uma distância um ângulo Observe a seguir . . .
  • 36. hd.tg d h tg .a.c .o.c tg =α =α⇒=α temos que: portanto: α= tg.dh Conhecendo a distância d que vale 50 metros e o ângulo α que vale 30°, podemos dizer então que: metros8675,28h 95773502691,0.50h 30tg.50h tg.dh = = °= α=
  • 37. Exemplo 1 A inclinação de uma rampa
  • 38. Uma rampa com inclinação constante, (como a que existe em Brasília) tem 6 metros de altura na sua parte mais elevada. Um engenheiro começou a subir, e nota que após ter caminhado 16,4 metros sobre a rampa está a 2,0 metros de altura em relação ao solo. Será que este engenheiro somente com esses dados e uma calculadora científica conseguiria determinar o comprimento total dessa rampa e sua inclinação em relação ao solo?
  • 39. Como poderíamos resolver essa situação? Como sugestão, faremos um “desenho” do que representa essa situação. Observemos: 6 metros 16,4 metros 2 metros θ Comprimento total da rampa solo
  • 40. 6 metros 16,4 metros 2 metros θ Observemos o triângulo retângulo em destaque . . . θ 2 metros 16,4 metros hip c.o. c.a. Temos em relação ao ângulo θ: hip = 16,4 metros c.o. = 2 metros
  • 41. θ 2 metros 16,4 metros hip c.o. c.a. Como: hip = 16,4 metros c.o. = 2 metros 121219512195,0 4,16 2 hip .o.c sen ===θ Obs.: quando dizemos que arcsen α = 1/2 , podemos transformar essa igualdade em uma pergunta: “qual é o arco, cujo seno vale 1/2?”, a resposta seria dizer que α = 30°.
  • 42. Em nosso exercício, chegamos a conclusão que: sen θ = 0,121951219512, logo podemos encontrar o ângulo θ, com o auxílio da calculadora que normalmente utiliza as funções ASIN ou SIN-1 , então, devemos digitar 0,121951219512 e a opção acima de sua calculadora. Se o processo foi realizado corretamente, deverá ser encontrado o valor 7,00472640907, que iremos considerar como aproximadamente 7°. Encontramos assim, a inclinação da rampa!
  • 43. 2,49 121219512195,0 6 7sen 6 sen o.c hip sen o.c hip.o.chip.sen hip .o.c sen == ° = θ = θ =⇒=θ⇒=θ 6 metros θ = 7° θ 2 metros 16,4 metros hip c.o. c.a. Notamos que os triângulos abaixo são semelhantes, portanto, podemos dizer que θ é válido para ambos Como: Chegamos a conclusão que o comprimento total da rampa é 49,2 metros
  • 45. Os conceitos trigonométricos aparecem com muita freqüência no estudo da Física, Topografia, Astronomia e de muitos outros assuntos. Observemos os exemplos a seguir: Em relação ao sistema de forças representado na figura, onde F1 = 20N, F2 = 100N, F3 = 40N e F4 = 10N, você seria capaz de determinar a intensidade da resultante do sistema e o ângulo que essa resultante forma com o eixo das abscissas (x)?
  • 46. Em primeiro lugar, teremos que fazer as projeções de 2F → nos eixos das abscissas e das ordenadas, obtendo assim, respectivamente os componentes )x(2F → e )y(2F → . Analogamente, encontraremos as projeções de 3F → , encontrando os componentes )x(3F → e )y(3F → .
  • 47. A resultante relativa ao eixo das abscissas       → )x(R é obtida da seguinte maneira: )x(31)x(2)x( FFFR →→→→ −+=        °=⇔=°==°⇒=α °=⇔=°==°⇒=α 60cos.FFFF.60cos F F 60cos. hip a.c cos 45cos.FFFF.45cos F F 45cos. hip a.c cos Como 3)x(3)x(33 3 )x(3 2)x(2)x(22 2 )x(2    =⇒=°= =⇒=°= N20F5,0.4060cos.FF N70F70,0.10045cos.FF totanPor )x(33)x(3 )x(22)x(2 )x(31)x(2)x( FFFR →→→→ −+= N70R 202070R )x( )x( = −+= → →
  • 48. A resultante relativa ao eixo das abscissas       → )y(R é obtida da seguinte maneira: )y(34)y(2)y( FFFR →→→→ −−=        °=⇔=°==°⇒=α °=⇔=°==°⇒=α 60sen.FFFF.60sen F F 60sen. hip o.c sen 45sen.FFFF.45sen F F 45sen. hip o.c sen Como 3)y(3)y(33 3 )y(3 2)y(2)y(22 2 )y(2    =⇒=°= =⇒=°= N4,34F86,0.4060sen.FF N70F70,0.10045sen.FF totanPor )y(23)y(3 )y(22)y(2 )y(34)y(2)y( FFFR →→→→ −−= N6,25R 4,341070R )y( )y( = −−= → →
  • 49. Colocando )x(R → e )y(R → , nos eixos das abscissas e das ordenadas, respectivamente, Percebemos que a figura formada pelas forças é um triângulo retângulo, em que sua hipotenusa é a Força Resultante → R , )x(R → é o cateto adjacente a αe )y(R → o cateto oposto a α, então, vale o teorema de Pitágoras para calcularmos o valor de → R .
  • 50. ( ) ( ) N53,74R 36,5555R 36,5555R 36,6554900R 6,2570R RRR cch 2 2 22 2 2 )y( 2 )x( 2 222 = = =      +=      +=            +      =      += → → → → → →→→
  • 51. Para o cálculo do ângulo α, temos: 3657,0 70 6,25 R R .a.c .o.c tg )x( )y( ====α → → 3657,0tg =α Esse é o valor da tangente do ângulo α. Para calcularmos o valor do ângulo α, temos que encontrar o arctg α, então: °≅α =α=α 20 3657,0arctgarctg Concluímos então que a Resultante N53,74R= → e forma um ângulo °≅α 20 com o eixo x.
  • 53. Um alpinista muito ágil, percorre um trajeto passando pelos pontos A e B. Não se sabe ao certo o que ocorreu, mas ele conseguiu com o material apropriado chegar a conclusão das medidas abaixo mencionadas. Quando chega até a árvore ele percebe que o único caminho que o levará até o ponto C é escalando-a. (a altura da árvore é representada por h - despreze a largura do tronco) Se sua velocidade média é de 0,2 m/s, quantos minutos ele demorou para sair do ponto A e chegar ao ponto C? ( )7,13 =
  • 54. Solução: Resumidamente, temos o triângulo ao lado que representa nosso desafio. )II(y.3h y.60tghhy.60tg y h .a.c .o.c 60tg )I()y20(. 3 3 h )y20(.30tghh)y20(.30tg )y20( h .a.c .o.c 30tg = °=⇒=°⇒==° += +°=⇒=+°⇒ + ==°
  • 56. 30 metros 17 metros para subir a árvore 17 metros para descer da árvore Agora com o valor das medidas temos condição de determinar quanto ele percorreu do ponto A até o ponto C, observe: De A até C ele percorreu 30 + 17 + 17 = 64 metros segundos20eutosmin5touutosmin333,5t 60 segundos320 tsegundos320 2,0 64 t V s tst.V t s V =∆=∆ ⇒=∆⇒==∆ ∆ =∆⇒∆=∆⇒ ∆ ∆ = v = 0,2 m/s