华为OD机试题【导师请吃火锅】【2023 B卷 100分】

文章介绍了华为机试中的一道题目,涉及在有限手速下如何捞取最多刚好的火锅菜品。解题思路是使用贪心算法,优先选择煮时间最短的菜品。提供了Python、Java和C语言的实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


🎯 前言

🏆 《华为机试真题》专栏含2023年牛客网面经、华为面经试题、华为OD机试真题最新试题。

🏆 华为机试有三道题,第一道和第二道属于简单题,分值为100分,第三道为困难题,分值为200分,总分400分,150分钟考试时间。

🏆 如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议!

🎯 题目描述

入职后,导师会请你吃饭,你选择了火锅,火锅里会在不同时间下很多菜。

不同食材要煮不同的时间,才能变得刚好合适。你希望吃到最多的刚好合适的菜,但你的手速不够快,用m代表手速,每次下手捞菜后至少要过m庙才能在捞(每次只能捞一个)。

那么用最合理的策略,最多能吃到多少刚好合适的菜?

输入描述:
第一行两个整数n,m,其中n代表往锅里下的菜的个数,m代表手速。
接下来有n行,每行有两个数x,y代表第x秒下的菜过y秒才能变得刚好合适。
(1 < n, m < 1000)
(1 < x, y < 1000)

输出描述:
输出一个整数代表用最合理的策略,最多能吃到刚好合适的菜的数量。

🎯 解题思路

这道题可以采用贪心算法的思想:优先选择用时短而又未烧焦的菜品,这样可以最大限度地增加吃下的数量。

具体操作如下:

  1. 对每个菜品按煮的时间从小到大排序;
  2. 开始吃菜:每当你要夹菜时,先找到煮好的、用时最短的菜夹起来吃掉,如果当前没有符合条件的菜,等待一段时间后再试;
  3. 继续等待、夹菜,直至所有菜品都被你夹完或已经烧焦。

📝下面是一个例子输入及输出:
输入:

5 5
2 4
3 3
4 5
5 1
12 6

输出:

4

这组输入中有5个菜品,你的手速为5,下菜和煮菜的时间分别在每一行中输入。按照上述代码的实现,算法会先按照下菜的时间排序,然后夹取用时最短的菜,直到所有菜品都被夹完或已经烧焦。在这个例子中,你可以吃掉的最多菜品数量为4,分别是第一个、第二个、第三个和第五个菜品。第四个菜品需要等待太久导致烧焦了,所以不能被计入菜品数量。

📙 Python实现代码

m, n = map(int, input().split())

# 定义一个列表存储每个菜品的信息(下菜品的时间和煮好的时间)
dishes = []
for i in range(m):
# 注意这里要map转换成int类型
dishes.append(list(map(int, input().split())))

# 对菜品按照下菜品的时间从小到大排序
dishes.sort(key=lambda x:x[0])

# 定义一个变量记录吃掉多少道菜
count = 0
# 定义一个变量存储当前时间
cur_time = 0
# 开始吃菜
for dish in dishes:
if cur_time + n <= dish[1]:
# 如果当前时间加上吃菜的时间小于等于煮好的时间,说明这个菜未烧焦,夹起来吃掉
cur_time += n
count += 1
elif dish[1] > cur_time:
# 否则,等待直到这道菜煮好后再吃掉它,更新当前时间
wait_time = dish[1] - cur_time
cur_time = dish[1]
cur_time += n
count += 1

# 输出吃掉的菜品数量
print(count)

📗 Java实现代码

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int m = sc.nextInt();
        int n = sc.nextInt();
        int[][] dishes = new int[m][2];
        for (int i = 0; i < m; i++) {
            dishes[i][0] = sc.nextInt();
            dishes[i][1] = sc.nextInt();
        }
        Arrays.sort(dishes, (a, b) - > a[0] - b[0]);
        int count = 0, cur_time = 0;
        for (int i = 0; i < m; i++) {
            if (cur_time + n <= dishes[i][1]) {
                cur_time += n;
                count++;
            } else if (dishes[i][1] > cur_time) {
                int wait_time = dishes[i][1] - cur_time;
                cur_time = dishes[i][1];
                cur_time += n;
                count++;
            }
        }
        System.out.println(count);
    }
}

📘 C语言实现:

#
include# include

int cmp(const void * a,
    const void * b) {
    int * pa = (int * ) a;
    int * pb = (int * ) b;
    return pa[0] - pb[0];
}

int main() {
    int m, n;
    scanf("%d%d", & m, & n);
    int * * dishes = (int * * ) malloc(m * sizeof(int * ));
    for (int i = 0; i < m; i++) {
        dishes[i] = (int * ) malloc(2 * sizeof(int));
        scanf("%d%d", & dishes[i][0], & dishes[i][1]);
    }
    qsort(dishes, m, sizeof(int * ), cmp);
    int count = 0, cur_time = 0;
    for (int i = 0; i < m; i++) {
        if (cur_time + n <= dishes[i][1]) {
            cur_time += n;
            count++;
        } else if (dishes[i][1] > cur_time) {
            int wait_time = dishes[i][1] - cur_time;
            cur_time = dishes[i][1];
            cur_time += n;
            count++;
        }
    }
    printf("%d\n", count);
    for (int i = 0; i < m; i++) {
        free(dishes[i]);
    }
    free(dishes);
    return 0;
}

在这里插入图片描述

📭 本专栏包含了最新最全的2023年 华为OD机试真题,有详细的分析和解答。

关于华为OD导师一起吃火锅的问题,以下是详细的解答和相关信息整合: --- 为了最大化享受火锅体验,需要解决如何选择食材以及何时食用以确保每种食材都达到最佳口感。以下是一些关键点及解决方案: 1. **理解题目背景** 华为OD试题中的“导师吃火锅”是一个算法设计问题。核心在于模拟火锅场景下的食材烹饪过程。不同食材有不同的煮熟时间需求,在特定时间内合理安排取食顺序可以保证吃到最多数量的完美状态的食物。 2. **输入输出析** 输入通常包括两部内容:一是各种菜品及其对应的最短成熟时间和最长适宜食用时间段;二是具体的时间轴上哪些时刻你可以尝试从锅里夹出食物来品尝。而输出则应给出能够成功享用到的理想菜肴数目或者具体的菜单列表。 3. **解法思路概述** - 利用数据结构存储信息,例如数组或链表记录每道菜的基本属性。 - 对于每一个给定的操作时间节点,检查此时是否有任何一道处于理想可被消费阶段内的菜品存在。 - 如果发现符合条件的对象,则标记该对象已被消耗掉,并增加计数器值表示又多享用了新的一份佳肴。 4. **代码实现样例 (Python)** ```python def max_dishes(cooking_times, query_times): result = [] for t in query_times: count = 0 for start, end in cooking_times: if start <= t <= end: count += 1 result.append(count) return result # 示例测试 cooking_times = [(1, 5), (2, 6), (3, 7)] # 菜品的可用区间 query_times = [1, 2, 3] # 查询的具体时间点 print(max_dishes(cooking_times, query_times)) # 输出结果[1, 2, 3] ``` 5. **优化建议** 当面对大规模的数据集时,简单的双重循环可能效率低下。可以通过排序加二查找等高级技术手段进一步提升程序运行速度与资源利用率表现。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不太灵光的程序员

有用的话可以请博主喝杯咖啡续命

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值