使用 resnet18网络进行图片分类 有数据 有代码 可直接运行

本文介绍了如何使用Resnet18网络进行图像分类任务,详细阐述了数据集划分、从零构建卷积神经网络、数据加载与增强、模型训练过程及预测结果的可视化。通过实际代码演示,展示了模型在有限数据上的表现,并探讨了预训练模型的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 目录

任务描述:

数据集介绍

从零实现一个用于图像分类的卷积神经网络 

数据载入 

增强数据可视化

训练模型:

可视化模型预测结果

使用现有的模型和预训练模型 

 数据:

任务描述:

图像分类旨在从图像、视频或者类似高维数据中识别物体的类别,原始的图像、视频或类似数据经过数据预处理后,进入图像分类模型进行前向预测,最终得到数据中每个实例的对应类别。

数据集介绍

数据集划分为训练集和验证集:

训练集位于datasets/train/ 目录下,两类的图片分别位于ants和bees目录下
验证 集位于datasets/val/ 目录下,两类的图片分别位于ants和bees目录下

蚂蚁样本:

蜜蜂样本 :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值