基于强化学习Q学习算法的AI下五子棋项目

本文介绍了一个基于Q学习的AI下五子棋项目。通过Q学习算法不断优化策略,训练两个模型分别对应黑棋和白棋。棋盘状态通过神经网络进行Q值的估计,使用8*8棋盘和神经网络模型处理状态多样性,通过实战对局不断学习和改进。实验结果显示,训练场次越多的模型表现越优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q学习方法

函数是对策略$\pi$的评估。如果策略$\pi$有限(即状态数和动作数都有限),可以对所有的策略进行评估并选出最优策略$\pi*$。但这种方式在实践中很难实现,通过迭代的方法不断优化策略,直到选出最优策略。 针对如何学习一个最优的策略,我们可以这样做:先随机初始化一个策略,计算该策略的值函数,并根据值函数来设置新的策略,然后一直反复迭代直到收敛。

如果需要拿到完整的轨迹才能评估和更新策略,则效率较低,因此考虑模拟一段轨迹,每行动一步,就利用贝尔曼方程评估状态的价值,即时序差分方法。下面考虑使用Q学习算法估计Q函数: $$ Q(s,a)\leftarrow Q(s,a)+\alpha(r+\gamma\max_{a'}Q(s',a')-Q(s,a)) $$ Q学习的算法不通过$π^ε$来选择下一步动作$a'$,而直接选择最优Q函数,所以更新后的Q函数是关于策略$\pi$而非$\pi^\epsilon$的,因此是一种异策略算法。

2. 流程图和伪代码

考虑使用Q学习的方法来得到能下黑白棋的人工智能。下黑白棋需要先手和后手,因此考虑使用相同的方法训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值