原地排序的快排算法(Swift实现)

本文深入解析快速排序算法,介绍其核心思想、原地排序过程及分区函数实现,展示如何通过递归将数组分为三部分,实现高效排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

快排思想

快速排序算法(Quicksort),我们习惯性把它简称为“快排”。快排利用的也是分治思想。乍看起来,它有点像归并排序,但是思路其实完全不一样。

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点),通常是区间的最后一个数据 - array[r]。我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

原地排序

原地快排的核心是 原地分区函数,此函数的实现思路非常巧妙

这里的处理有点类似选择排序。我们通过游标 i 把 array[p…r-1] 分成两部分。array[p…i-1] 的元素都是小于 pivot 的,我们暂且叫它 已处理区间,array[i…r-1] 是 未处理区间。我们每次都从未处理的区间 array[i…r-1] 中取一个元素 array[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 array[i]的位置。

怎样实现 “加入到已处理区间的尾部” ?

  1. 通过交换 array[j] 与 array[i],并把 i += 1 来实现
  2. 只需要将 array[i] 与 array[j] 交换,就可以在 O(1) 时间复杂度内将 array[j] 放到下标为 i 的位置。

原地排序, 分界点选取最后一个元素

/// 原地分区函数(array: 待分区数组, p: 起始下标, r: 结束下标)
private func partition(_ array: inout [Int], _ p: Int, _ r: Int) -> Int {
    let pivot = array[r]
    var i = p
    for j in p...r-1 {
        if array[j] < pivot {
            // 交换数组下标为 i、j 的元素
            array.swapAt(i, j)
            i += 1
        }
    }
    array.swapAt(i, r)
    // 返回的是分区点的下标,遍于调用者继续递归排序
    return i
}

根据上面的 partition 实现最终的快排

/// 快速排序算法
public func qucikSort(_ array: inout [Int], _ p: Int, _ r: Int) -> [Int] {
    // 需要排序的区间只包含一个数字,则不需要重排数组,直接返回
    if p >= r { return array }
    let i = partition(&array, p, r)
    qucikSort(&array, p, i-1)
    qucikSort(&array, i+1, r)
    return array
}

拓展

原地排序, 分界点选取第一个元素

/// 原地分区函数(array: 待分区数组, p: 起始下标, r: 结束下标)
private func partition(_ array: inout [Int], _ p: Int, _ r: Int) -> Int {
    let pivot = array[p]
    var i = p, j = r
    while i != j {
        // 先从右向左找小于pivot的数(order is important)
        while array[j] >= pivot && i < j {
            j -= 1
        }
        // 再从左往右找大于pivot的数
        while array[i] <= pivot && i < j {
            i += 1
        }
        if i < j {
            array.swapAt(i, j);
        }
    }
    // 找到分界点在数组中的位置, 并与"雀占鸠巢"者交换
    array.swapAt(p, i);
    return i
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

依旧风轻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值