基于Deepseek大模型落地代码流程可视化功能

代码流程可视化Prompt

代码可视化专家Prompt指令的最佳实践

Prompt修改场景
  1. 注意修改指令中 OutputFormat,便于使用代码程序进行解析
    - OutputFormat: 仅回复Mermaid流程图代码,请不要回复任何代码之外的文本,并且不要使用Markdown语法。
    
  2. 删除 Initialization 初始指令

代码实现

代码仓库

deepseek-code2mermaid

插件核心逻辑预览效果

在这里插入图片描述

功能描述

基于VSCode插件体系,开发 DeepSeek Code2Mermaid 功能,将代码的执行流程转为可在线预览的Mermaid流程图,提升代码的可读性。

功能特点

  1. 支持选中代码片段生成流程图
  2. 支持选中文件或文件夹生成流程图
  3. 支持流程图缩放预览
  4. 支持导出SVG格式的流程图
  5. 基于DeepSeek AI模型,
### 部署 DeepSeek 大模型的方法、工具和最佳实践 #### 方法概述 DeepSeek 是一种基于 Transformer 的大型语言模型,其部署涉及多个阶段,包括环境准备、模型加载、推理优化和服务化。为了成功部署 DeepSeek 模型,通常需要完成以下几个核心环节:模型下载与存储、运行时环境配置以及高性能推理框架的选择。 #### 工具支持 1. **Hugging Face Hub 和 `huggingface-cli`** 使用 Hugging Face 提供的工具可以简化模型的获取过程。通过安装并使用 `huggingface_cli`,能够轻松访问和下载所需的 DeepSeek 模型文件[^1]。 2. **加速库与框架** 推理性能对于大规模应用至关重要。推荐使用的工具包括: - PyTorch 或 TensorFlow:作为基础深度学习框架,用于加载预训练权重和支持动态图计算。 - ONNX Runtime:提供跨平台兼容性和高效的推理能力,尤其适合 CPU 场景下的批量处理任务。 - NVIDIA TensorRT:针对 GPU 加速场景设计,可显著提升吞吐量和降低延迟时间。 ```bash pip install onnxruntime-gpu torch transformers ``` 3. **容器化技术** Docker 容器被广泛应用于生产环境中实现隔离性与一致性。创建自定义镜像时应包含必要的依赖项(如 Python 版本、驱动程序版本),并通过 Kubernetes 编排集群资源分配策略来扩展规模。 #### 最佳实践建议 - **硬件选型** 对于高并发请求或者复杂自然语言理解任务来说,配备专用 AI 芯片(例如 NVIDIA A100/Tesla V100)会带来明显优势;而对于轻量化应用场景,则可以选择性价比更高的解决方案比如 RTX 系列显卡或其他云端实例类型。 - **分层缓存机制** 实施嵌套式的 LRU/LFU 缓存结构有助于减少重复查询开销,在不牺牲太多内存占用的前提下提高响应速度。 - **监控与日志记录** 建立完善的指标体系以便实时跟踪系统健康状况及瓶颈所在位置,并利用 ELK Stack 或 Prometheus+Grafana 组合来进行可视化展示分析工作负载变化趋势。 ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek/lm") model = AutoModelForCausalLM.from_pretrained("deepseek/lm", device_map='auto', torch_dtype=torch.float16) def generate_text(prompt): inputs = tokenizer.encode(prompt, return_tensors="pt").to('cuda') outputs = model.generate(inputs, max_length=50) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值