文件大纲
- 📚 一、**AI Agent 系统**
-
- 🤖 3. 多智能体系统是什么?有哪些典型场景?
- 📊 2. 介绍MADDPG和QMIX算法
- 🔁 3. ReAct模式如何在Agent架构中实现?
- 🔍 4. Agentic RAG与普通RAG有何区别?
- 🛠️ 5. 如何设计一个支持工具调用的Agent?
- 📈 6. 如何评估多智能体系统的性能?
根据你的简历描述,你在AI Agent系统设计开发、大模型研发(LLM, VLM)以及RAG或多模态优化技术方面有经验。下面我为你整理了一份详细的复习笔试面试题参考资料和GitHub资源,希望能帮助你系统性地准备。
📚 一、AI Agent 系统
AI Agent 系统通常涉及感知、决策、执行等模块,以及多智能体协作。
📖 核心知识点:
- Agent架构:熟悉ReAct(Reasoning + Acting)、CodeAct(生成并执行代码)、Agentic RAG(检索增强生成与Agent结合)等模式。理解Agent的核心构成模块,如感知、认知与决策、执行、学习与优化等。
- 多智能体系统(MAS):
- 核心概念:了解Markov Game(马尔可夫游戏)、协作/竞争/混合环境、集中训练与分布式执行(CTDE)等。
- 经典算法:如MADDPG(集中Critic,分布式Actor)、QMIX(混合Q值)、VDN(值分解网络)等。
- 工具调用与规划:Agent如何动态生成代码、调用API或外部工具完成任务。
高频面试题及答案解析
🧠 AI Age