文章大纲
📖 核心知识点:
- LLM基础:
- Transformer架构:深入理解Self-Attention、Multi-Head Attention、位置编码(如RoPE)、Layer Normalization等。
- 生成与推理:因果语言建模(Causal LM)、思维链(CoT)提示。
- 模型演进与选择:了解Decoder-only架构(如GPT系列)成为主流的原因,以及在不同场景下如何选择模型(如Bert vs LLaMA)。
- VLM基础:
- 核心架构:通常包含视觉编码器(如ViT, CLIP-ViT)、投影器(将视觉特征映射到语言模型空间)和LLM三大部分。
- 训练策略:常见多阶段训练,如投影器初始化、交错式预训练、监督微调等。
- 预训练目标:对比学习(如CLIP)、生成式目标(如图像描述)、对齐目标(如细粒度区域-词对齐)。
- 模型优化与推理:
- 高效微调(PEFT)</