AI agent开发与大模型工程师面试复习纲要与高频面试题答案(1)-- 大语言模型(LLM)与视觉语言模型(VLM)


📖 核心知识点:

  1. LLM基础
    • Transformer架构:深入理解Self-Attention、Multi-Head Attention、位置编码(如RoPE)、Layer Normalization等。
    • 生成与推理:因果语言建模(Causal LM)、思维链(CoT)提示。
    • 模型演进与选择:了解Decoder-only架构(如GPT系列)成为主流的原因,以及在不同场景下如何选择模型(如Bert vs LLaMA)。
  2. VLM基础
    • 核心架构:通常包含视觉编码器(如ViT, CLIP-ViT)、投影器(将视觉特征映射到语言模型空间)和LLM三大部分。
    • 训练策略:常见多阶段训练,如投影器初始化、交错式预训练、监督微调等。
    • 预训练目标:对比学习(如CLIP)、生成式目标(如图像描述)、对齐目标(如细粒度区域-词对齐)。
  3. 模型优化与推理
    • 高效微调(PEFT)</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值