文章大纲
🔍 三、检索增强生成(RAG)与多模态优化
📖 核心知识点:
- RAG核心流程:
- 文档加载与预处理:从多源加载数据,并进行清洗、分割(Chunking)。分割策略(按固定长度、语义、格式)至关重要。
- 向量化与检索:选择Embedding模型(如BGE、E5),使用向量数据库(如Milvus、Pinecone)进行相似性检索或混合检索(Hybrid Search)。
- 生成与后处理:将检索到的上下文通过Prompt模板传递给LLM生成答案,并进行幻觉检测、引用溯源等后处理。
- RAG优化策略:
- 检索优化:重排序(Reranker,如BGE-Reranker)、多路召回(向量、全文、图谱)、查询理解(意图分类、关键词扩展)。
- 评估指标:检索阶段关注Recall@K、MRR;生成阶段关注答案相关性、准确性、忠实度。
- 多模态RAG与优化:
- 处理图像、表格等多模态数据时,可使用多模态Embedding模型(如CLIP)或将表格转换为文本。
- 关注知识