AI agent开发与大模型工程师面试复习纲要与高频面试题答案(3)-- 检索增强生成(RAG)与多模态优化


🔍 三、检索增强生成(RAG)与多模态优化

📖 核心知识点:
  1. RAG核心流程
    • 文档加载与预处理:从多源加载数据,并进行清洗、分割(Chunking)。分割策略(按固定长度、语义、格式)至关重要。
    • 向量化与检索:选择Embedding模型(如BGE、E5),使用向量数据库(如Milvus、Pinecone)进行相似性检索或混合检索(Hybrid Search)。
    • 生成与后处理:将检索到的上下文通过Prompt模板传递给LLM生成答案,并进行幻觉检测、引用溯源等后处理。
  2. RAG优化策略
    • 检索优化:重排序(Reranker,如BGE-Reranker)、多路召回(向量、全文、图谱)、查询理解(意图分类、关键词扩展)。
    • 评估指标:检索阶段关注Recall@K、MRR;生成阶段关注答案相关性、准确性、忠实度。
  3. 多模态RAG与优化
    • 处理图像、表格等多模态数据时,可使用多模态Embedding模型(如CLIP)或将表格转换为文本。
    • 关注知识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值