AI agent开发与大模型工程师面试复习纲要与高频面试题答案(4)-- AI agent系统设计与项目实践


📖 核心知识点:
  1. 分布式训练与推理:了解DeepSpeed、FSDP等分布式训练策略,以及TensorRT、ONNX等模型部署优化技术。
  2. 模型量化:训练后量化(PTQ)与量化感知训练(QAT)的区别与实现。
  3. 系统设计:如何设计一个高可用、可扩展的AI Agent或大模型服务平台,考虑微服务、缓存、监控、安全等因素。
❓ 高频面试题:
  • 如何让大模型处理更长的文本?
  • 有哪些省内存的大模型训练/微调/推理方法?
  • 如果想在全参数微调,需要多少显存?
  • 如何进行模型的分布式训练和推理优化?
  • 如何设计一个支持高并发访问的RAG系统?
🔗 相关GitHub资源:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值