在 AI 代理(Agent)系统逐渐走向产业化的当下,越来越多开发者开始深入探讨「函数调用(Function Calling)」与「多智能体协作协议(MCP, Multi-Agent Collaboration Protocol)」之间的差异。本质上,这不仅是两种技术实现方式的对比,更是对未来 AI 系统架构的一种价值选择。
本文将从底层原理、系统架构演化趋势、开发效率、扩展性以及智能体协作能力几个维度,深度探讨为何 MCP 的出现不是偶然,而是 AI 架构从函数式向协议式跃迁的必然结果。
一、从 Function Calling 到 MCP:两种范式的根本差异
1.1 什么是 Function Calling?
Function Calling 最初由 OpenAI 在 2023 年引入,允许模型识别 JSON schema 并调用后端 API。它的典型流程是:
用户输入 → 大模型分析意图 → 调用匹配函数 → 返回结果 → 继续对话
这种方式非常适合单一任务调度,尤其是在「AI 作为助手」的场景中。比如查询天气、检索数据库、生成报表等。
1.2 MCP 的提出背景与核心理念
MCP(Multi-Agent Collaboration Protocol)是面向**多智能体系统(Multi-Agent Systems)**而设计的一种通用通信与协作协议,它的核心思想是:
将多个智能体(Agent)通过协议层连接起来,让它们可以像微服务一样协同工作、共享上下文、动态分工。
与 Function Calling 的“一问一答式”封闭交互不同,MCP 强调的是:
- Agent 自主性(可规划、可反思)