RMQ 算法详解(区间最值问题)

问题介绍

RMQ问题是OI中经常遇到的问题,主要是一下形式:

  • 给你一堆数,不断的对里面的数进行操作,例如:让某个数加几、让某个数乘几,中途查询区间内的最大值或是最小值。

解决方法

暴力法

  • 优点
    容易想出此方法,代码简单,容易理解。
  • 缺点
    时间复杂度高,效率低,在处理大数据是会超时。

ST表法

ST表(Sparse Table)是一种用于高效解决静态RMQ问题的数据结构,通过倍增思想和动态规划实现O(1)时间复杂度的区间查询。

  • 优点
    快速,时间复杂度低,效率高。
  • 缺点
    相对较长

基本思想

  • 预处理:构建二维DP数组st[i][j],存储区间[i, i+2^j-1]的最值

  • 查询:将任意区间[L,R]拆分为两个重叠的 2 k 2^k 2k长度区间,取最值

算法步骤

  • 预处理阶段

初始化:st[i][0] = a[i](单个元素的最值)

递推公式:st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1])

时间复杂度: O ( N l o g N ) O(N logN) O(NlogN)

  • 查询阶段

计算区间长度指数:k = log2(R-L+1)

查询公式:max(st[L][k], st[R-(1<<k)+1][k])

时间复杂度: O ( 1 ) O(1) O(1)

C++实现

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

const int MAXN = 1e5+5, LOG = 20;
int st[MAXN][LOG], Log2[MAXN];

void init(int n, vector<int>& arr) {
    // 预处理对数表
    Log2[1] = 0;
    for(int i=2; i<=n; i++) 
        Log2[i] = Log2[i/2] + 1;
    
    // 初始化ST表
    for(int i=0; i<n; i++)
        st[i][0] = arr[i];
    
    // 动态规划构建ST表
    for(int j=1; j<LOG; j++) {
        for(int i=0; i+(1<<j)<=n; i++) {
            st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
        }
    }
}

int query(int L, int R) {
    int k = Log2[R-L+1];
    return max(st[L][k], st[R-(1<<k)+1][k]);
}

int main() {
    vector<int> arr = {3, 2, 4, 5, 1, 6, 0, 8};
    int n = arr.size();
    init(n, arr);
    
    cout << "区间[1,4]最大值: " << query(1,4) << endl; // 输出5
    cout << "区间[0,7]最大值: " << query(0,7) << endl; // 输出8
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sirius·Black

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值