LLM - 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数 教程(2)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/145188660

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与 模型规模N、数据量D、计算资源C 之间关系的经验规律,揭示在大模型中,随着模型参数数量、数据集大小和计算资源的增加,模型性能的变化模式,指导更高效地分配资源,优化模型训练过程,实现更好的性能。这些规律不仅有助于预测不同规模模型的表现,还能为模型设计和训练提供理论依据,是推动大模型发展和应用的重要理论基础。

系列文章:

  1. 大模型 ScallingLaws 的 C=6ND 公式推导
  2. 大模型 ScallingLaws 的
<think>嗯,用户要求我比较maskedlanguagemodel (MLM)因果语言模型(CLM)的技术差异。用户的问题很明确,要求做技术对比分析。用户提供了三个引用,都是关于MLMCLM区别的。引用[1]提到因果语言模型是GPT的核心,是单向模型;引用[2]说明两种方法在训练目标架构上有显著差异;引用[3]则强调两者是不同的预训练目标。这些信息很有价值,可以作为回答的基础。我需要从多个维度对比这两种技术。首先想到的是训练目标:MLM是预测被遮蔽的词语,而CLM是预测序列中的下一个词。这个差异很关键。 模型架构方面,MLM通常使用双向Transformer,能同时看到上下文两边的信息;CLM则用单向Transformer,只能看到左侧信息。这决定了它们处理数据的方式不同。 在应用场景上,MLM更适合理解类任务,如分类或问答;CLM则擅长生成类任务,如文本创作。用户可能很关心这个实际应用的区别。 还要考虑训练效率问题。MLM可以并行计算所有token,训练更快;CLM只能顺序处理,训练较慢但推理更自然。这个技术细节值得说明。 最后要总结它们的本质区别:MLM是填空式训练,CLM是续写式训练。这个比喻可能帮助用户理解。 用户身份可能是NLP研究者或工程师,需要技术细节但也要清晰解释。我会避免过于学术化的表述,用对比表格来直观展示差异。准备在回答后生成相关问题,比如具体实现差异或如何选择模型,帮助用户深入探索。这些问题要围绕技术对比展开,符合用户的学习需求。</think>好的,我们来深入对比分析掩码语言模型(Masked Language Modeling, MLM因果语言模型(Causal Language Modeling, CLM)的核心技术差异。这两种方法是训练大型语言模型(LLM)的基石,代表了不同的学习范式能力特点。 **核心区别总结:** * **MLM (如BERT):** 核心是**理解**。模型被训练去“填空”(预测被随机遮蔽的词语),可以同时利用遮蔽词**左右两侧**的上下文信息。本质上是**双向**的。 * **CLM (如GPT):** 核心是**生成**。模型被训练去“续写”(预测序列中的**下一个**词),只能利用当前词**左侧**的历史信息。本质上是**单向**的(自回归)。 **详细技术对比分析:** | 特征 | 掩码语言模型 (MLM) | 因果语言模型 (CLM) | | :----------- | :--------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------- | | **核心训练目标** | 预测输入序列中被随机遮蔽(Mask)的词语。任务:填空。 | 预测给定序列中下一个词(Token)。任务:续写。 | | **上下文利用** | **双向**:模型在预测被遮蔽的词时,可以同时看到并利用该词**左侧右侧**的所有上下文信息。 | **单向**:模型在预测位置 $t$ 的词时,只能看到并利用位置 $1$ 到 $t-1$ 的**左侧**上下文信息。 | | **模型架构倾向** | 通常基于**双向Transformer编码器**。BERT是典型代表。 | 通常基于**单向Transformer解码器**(或仅解码器架构)。GPT系列是典型代表。 | | **信息流** | 信息可以自由地在序列中**向前向后**流动。 | 信息只能**从左向右**流动(对于标准从左到右的语言模型)。存在信息屏蔽机制(如因果注意力掩码)。 | | **学习侧重点** | 更侧重于**词语/短语级别的深层语义理解****上下文表示**。模型学习词语在特定上下文中的含义关系。 | 更侧重于**序列建模****生成连贯文本**的能力。模型学习根据历史信息预测最可能的后续内容。 | | **典型应用场景** | **自然语言理解(NLU)任务**:文本分类、命名实体识别、情感分析、问答(抽取式)、语义相似度判断等。 | **自然语言生成(NLG)任务**:文本生成、对话系统、机器翻译、摘要生成、问答(生成式)、代码补全等。 | | **训练效率** | 通常**训练更快**:因为可以并行计算所有位置(包括未被遮蔽的位置)的表示损失(对于非遮蔽词损失为0)。 | 通常**训练稍慢**:预测 $t$ 位置的词依赖于 $1$ 到 $t-1$ 位置的计算结果,难以完全并行(需序列化处理)。 | | **推理过程** | **非自回归**(在预训练任务中):预测被遮蔽的词是同时进行的(虽然实际应用中可能用于生成,但效率不高)。 | **自回归**:生成文本时,逐个预测下一个词,并将预测结果作为输入的一部分用于预测后续的词。$y_t = f(y_1, y_2, ..., y_{t-1})$ | | **预训练任务示例** | `[CLS] The [MASK] sat on the [MASK] . [SEP]` (预测被遮蔽的词 `cat` `mat`) | `The quick brown fox jumps over the` -> 预测下一个词 `lazy` | | **代表性模型** | BERT, RoBERTa, ALBERT, DeBERTa | GPT (1,2,3,4), LLaMA, BLOOM, OPT, Claude | | **优势** | 强大的**上下文理解能力**,在需要深入分析文本含义的任务上表现优异。 | 强大的**文本生成能力**,能产生流畅、连贯的新文本序列。 | | **局限性** | **原生生成能力较弱**:其训练目标(填空)双向性使其在直接生成连贯长文本时不如CLM模型自然高效。 | **缺乏“前瞻”能力**:在理解任务中,由于无法利用右侧信息,有时表现不如同等规模的MLM模型。 | **关键差异图解:** 1. **MLM (双向 - 理解):** ``` Input: [CLS] The [MASK] sat on the [MASK] . [SEP] ↑ ↑ ↑ ↑ ↑ ↑ ↑ Context: All positions can attend to ALL other positions (bidirectional arrows). Task: Predict 'cat' for first [MASK] using info from 'The', 'sat', 'on', 'the', '[MASK]', '.'. Predict 'mat' for second [MASK] using info from 'The', '[MASK]', 'sat', 'on', 'the', '.'. ``` 2. **CLM (单向 - 生成):** ``` Input: <s> The quick brown fox jumps ↑ ↑ ↑ ↑ ↑ ↑ Context: Each position can ONLY attend to previous positions (leftward arrows). Task: After seeing '<s> The', predict 'quick'. After seeing '<s> The quick', predict 'brown'. ... After seeing '<s> The quick brown fox jumps', predict the next word (e.g., 'over'). ``` **总结与启示:** * **MLM CLM 代表了语言模型学习的两种互补范式**:MLM 擅长深度理解现有文本的语义关系,CLM 擅长根据已有信息生成未来的文本。 * **模型选择取决于任务**:需要强大的文本理解能力(如分类、信息抽取)时,基于MLM的模型(或其变种/微调版本)通常是更好的起点。需要流畅的文本生成能力时,基于CLM的模型是首选。 * **融合趋势**:现代LLM的发展并非完全割裂。例如: * 一些模型(如T5)使用类似MLM的“Span Corruption”目标,但使用类似GPT的解码器架构进行生成。 * BART 等模型结合了双向编码器自回归解码器,用于序列到序列任务(如摘要、翻译)。 * XLNet 通过排列语言模型试图结合双向上下文信息自回归特性。 * 指令微调(Instruction Tuning)基于人类反馈的强化学习(RLHF)等技术,使强大的CLM模型(如GPT-4)也能在多种理解任务上达到卓越水平,尽管其底层机制仍是单向自回归的[^1][^2][^3]。 理解 MLM CLM 的核心技术差异是理解当前 LLM 生态、选择合适模型以及探索模型能力边界的基础[^1][^2][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值