LLM - 理解 DeepSeek 的 MLA (多头隐含注意力) 公式与源码 教程(1)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/145593535


DeepSeek V3 的核心创新,包括 3 个部分,架构(Architecture)、预训练(Pre-Training)与后训练(Post-Training):

  1. 架构(Architecture):创新的负载均衡策略与训练目标
    1. 使用 无需辅助损失(Auxiliary-Loss-Free)负载均衡(Load Balancing) 策略,将鼓励负载均衡而性能下降的问题降至最低。
    2. 使用 多Token预测(Multi-Token Prediction, MTP) 目标,提升模型性能。还可用于 推测性解码(Speculative Decoding),以加速推理过程。
  2. 预训练(Pre-Training):迈向极致的训练效率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值