LLM - 多模态大模型(MLLM) 的 Step-by-Step 推理步骤奖励 (R1-VL) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/146398654


通过高质量 思维链(Chain-of-Thought, CoT) 的推理数据,有监督微调(Supervised Fine-Tuning) 增强多模态大语言模型(MLLM) 的推理能力,导致模型只是模仿成功的推理路径,而不理解错误的推理路径。将 MLLM 的推理能力,超越 被动(Passively) 模仿正确推理路径,使用 逐步分组相对策略优化(StepGRPO),通过 简单(simple)有效(effective)密集(dense) 的逐步奖励,自主提升推理能力。

使用 2 种 基于规则(Rule-Based) 的推理奖励 (平滑奖励):

  1. 逐步推理 准确性奖励 (Step-wis
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值