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Preventing script injection vulnerabilities 
through software design.
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SCRIPT INJECTION VULNERABILITIES  are a bane of 
Web application development: deceptively simple in 
cause and remedy, they are nevertheless surprisingly 
difficult to prevent in large-scale Web development.

Cross-site scripting (XSS)2,7,8 arises when insufficient 
data validation, sanitization, or escaping within a Web 
application allow an attacker to cause browser-side 

execution of malicious JavaScript in 
the application’s context. This injected 
code can then do whatever the attacker 
wants, using the privileges of the vic-
tim. Exploitation of XSS bugs results 
in complete (though not necessarily 
persistent) compromise of the victim’s 
session with the vulnerable applica-
tion. This article provides an overview 
of how XSS vulnerabilities arise and 
why it is so difficult to avoid them in 
real-world Web application software 
development. Software design pat-
terns developed at Google to address 
the problem are then described. 

A key goal of these design patterns 
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is to confine the potential for XSS 
bugs to a small fraction of an applica-
tion’s code base, significantly improv-
ing one’s ability to reason about the 
absence of this class of security bugs. 
In several software projects within 
Google, this approach has resulted in a 
substantial reduction in the incidence 
of XSS vulnerabilities.

Most commonly, XSS vulnerabili-
ties result from insufficiently validat-
ing, sanitizing, or escaping strings that 
are derived from an untrusted source 
and passed along to a sink that inter-
prets them in a way that may result in 
script execution.  

Common sources of untrustworthy 
data include HTTP request parame-
ters, as well as user-controlled data lo-
cated in persistent data stores. Strings 
are often concatenated with or inter-
polated into larger strings before as-
signment to a sink. The most frequent-
ly encountered sinks relevant to XSS 
vulnerabilities are those that interpret 
the assigned value as HTML markup, 
which includes server-side HTTP re-
sponses of MIME-type text/html, and 
the Element.prototype.innerHTML 
Document Object Model (DOM)8 prop-
erty in browser-side JavaScript code.

Figure 1a shows a slice of vulner-

able code from a hypothetical photo-
sharing application. Like many mod-
ern Web applications, much of its 
user-interface logic is implemented in 
browser-side JavaScript code, but the 
observations made in this article trans-
fer readily to applications whose UI is 
implemented via traditional server-
side HTML rendering. 

In code snippet (1) in the figure, 
the application generates HTML 
markup for a notification to be shown 
to a user when another user invites 
the former to view a photo album. 
The generated markup is assigned to 
the innerHTML property of a DOM 
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main page. If the login resulted from 
a session time-out, however, the app 
navigates back to the URL the user 
had visited before the time-out. Using 
a common technique for short-term 
state storage in Web applications, 
this URL is encoded in a parameter of 
the current URL.

The page navigation is implement-
ed via assignment to the window.lo-
cation.href DOM property, which 
browsers interpret as instruction to 
navigate the current window to the 
provided URL. Unfortunately, navi-
gating a browser to a URL of the form 
javascript:attackScript causes 
execution of the URL’s body as Java 
Script. In this scenario, the target 
URL is extracted from a parameter of 
the current URL, which is generally 
under attacker control (a malicious 
page visited by a victim can instruct 
the browser to navigate to an attack-
er-chosen URL).

Thus, this code is also vulnerable 
to XSS. To fix the bug, it is necessary to 
validate that the URL will not result in 
script execution when dereferenced, by 
ensuring that its scheme is benign—
for example, https.

Why Is XSS So Difficult to Avoid?
Avoiding the introduction of XSS into 
nontrivial applications is a difficult 
problem in practice: XSS remains 
among the top vulnerabilities in Web 
applications, according to the Open 
Web Application Security Project 
(OWASP);4 within Google it is the most 
common class of Web application vul-
nerabilities among those reported un-
der Google’s Vulnerability Reward Pro-
gram (https://goo.gl/82zcPK).

Traditionally, advice (including my 
own) on how to prevent XSS has largely 
focused on:

˲˲ Training developers how to treat 
(by sanitization, validation, and/or es-
caping) untrustworthy values interpo-
lated into HTML markup.2,5

˲˲ Security-reviewing and/or testing 
code for adherence to such guidance.

In our experience at Google, this ap-
proach certainly helps reduce the inci-
dence of XSS, but for even moderately 
complex Web applications, it does not 
prevent introduction of XSS to a rea-
sonably high degree of confidence. We 
see a combination of factors leading to 
this situation.

element (a node in the hierarchical 
object representation of UI elements 
in a browser window), resulting in its 
evaluation and rendering.

The notification contains the album’s 
title, chosen by the second user. A mali-
cious user can create an album titled:

<script>attackScript;</script>

Since no escaping or validation is 
applied, this attacker-chosen HTML is 
interpolated as-is into the markup gen-
erated in code snippet (1). This markup 
is assigned to the innerHTML sink, 
and hence evaluated in the context of 
the victim’s session, executing the at-
tacker-chosen JavaScript code.

To fix this bug, the album’s title 
must be HTML-escaped before use in 
markup, ensuring that it is interpret-

ed as plain text, not markup. HTML- 
escaping replaces HTML metacharac-
ters such as <, >, ", ', and & with corre-
sponding character entity references 
or numeric character references: &lt;, 
&gt;, &quot;, &#39;, and &amp;. The 
result will then be parsed as a sub-
string in a text node or attribute value 
and will not introduce element or at-
tribute boundaries.

As noted, most data flows with a 
potential for XSS are into sinks that 
interpret data as HTML markup. But 
other types of sinks can result in XSS 
bugs as well: Figure 1b shows anoth-
er slice of the previously mentioned 
photo-sharing application, respon-
sible for navigating the user interface 
after a login operation. After a fresh 
login, the app navigates to a precon-
figured URL for the application’s 

The following code snippet intends to populate a DOM element with markup for a 
hyperlink (an HTML anchor element):

var escapedCat = goog.string.htmlEscape(category); 
var jsEscapedCat = goog.string.escapeString(escapedCat); 
catElem.innerHTML = '<a onclick="createCategoryList(\'' + 
        jsEscapedCat + '\')">' + escapedCat + '</a>';

The anchor element’s click-event handler, which is invoked by the browser when 
a user clicks on this UI element, is set up to call a JavaScript function with the value of 
category as an argument. Before interpolation into the HTML markup, the value of 
category is HTML-escaped using an escaping function from the JavaScript Closure 
Library. Furthermore, it is JavaScript-string-literal-escaped (replacing ' with \' and 
so forth) before interpolation into the string literal within the onclick handler’s 
JavaScript expression. As intended, for a value of Flowers & Plants for variable 
category, the resulting HTML markup is:

<a onclick="createCategoryList('Flowers &amp; Plants')"> 
      Flowers &amp; Plants</a>

So where’s the bug? Consider a value for category of:

');attackScript();//

Passing this value through htmlEscape results in:

&#39;);attackScript();//

because htmlEscape escapes the single quote into an HTML character reference. 
After this, JavaScript-string-literal escaping is a no-op, since the single quote at the 
beginning of the page is already HTML-escaped. As such, the resulting markup becomes:

<a onclick="createCategoryList('&#39;);attackScript();//')"> 
      &#39;);attackScript();//</a>

When evaluating this markup, a browser will first HTML-unescape the value of the 
onclick attribute before evaluation as a JavaScript expression. Hence, the JavaScript 
expression that is evaluated results in execution of the attacker’s script:

createCategoryList('');attackScript();//')

Thus, the underlying bug is quite subtle: the programmer invoked the appropriate 
escaping functions, but in the wrong order.

A Subtle XSS Bug
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Subtle security considerations. 
As seen, the requirements for secure 
handling of an untrustworthy value 
depend on the context in which the 
value is used. The most commonly 
encountered context is string inter-
polation within the content of HTML 
markup elements; here, simple 
HTML-escaping suffices to prevent 
XSS bugs. Several special contexts, 
however, apply to various DOM ele-
ments and within certain kinds of 
markup, where embedded strings are 
interpreted as URLs, Cascading Style 
Sheets (CSS) expressions, or JavaS-
cript code. To avoid XSS bugs, each of 
these contexts requires specific vali-
dation or escaping, or a combination 
of the two.2,5 The accompanying side-
bar, “A Subtle XSS Bug,” shows this 
can be quite tricky to get right.

Complex, difficult-to-reason-about 
data flows. Recall that XSS arises from 
flows of untrustworthy, unvalidated/es-
caped data into injection-prone sinks. 
To assert the absence of XSS bugs in 
an application, a security reviewer 
must first find all such data sinks, and 
then inspect the surrounding code for 
context-appropriate validation and es-
caping of data transferred to the sink. 
When encountering an assignment 
that lacks validation and escaping, the 
reviewer must backward-trace this data 
flow until one of the following situa-
tions can be determined:

˲˲ The value is entirely under applica-
tion control and hence cannot result in 
attacker-controlled injection.

˲˲ The value is validated, escaped, 
or otherwise safely constructed some-
where along the way.

˲˲ The value is in fact not correctly 
validated and escaped, and an XSS vul-
nerability is likely present.

Let’s inspect the data flow into 
the innerHTML sink in code snippet 
(1) in Figure 1a. For illustration pur-
poses, code snippets and data flows 
that require investigation are shown 
in red. Since no escaping is applied 
to sharedAlbum.title, we trace its 
origin to the albums entity (4) in per-
sistent storage, via Web front-end code 
(2). This is, however, not the data’s ulti-
mate origin—the album name was pre-
viously entered by a different user (that 
is, originated in a different time con-
text). Since no escaping was applied to 
this value anywhere along its flow from 

an ultimately untrusted source, an XSS 
vulnerability arises. 

Similar considerations apply to the 
data flows in Figure 1b: no validation 
occurs immediately prior to the as-
signment to window.location.href 
in (5), so back-tracing is necessary. In 
code snippet (6), the code exploration 
branches: in the true branch, the value 
originates in a configuration entity in 
the data store (3) via the Web front end 
(8); this value can be assumed applica-
tion-controlled and trustworthy and is 
safe to use without further validation. 
It is noteworthy that the persistent 
storage contains both trustworthy and 
untrustworthy data in different enti-
ties of the same schema—no blanket 
assumptions can be made about the 
provenance of stored data.

In the else-branch, the URL origi-
nates from a parameter of the current 
URL, obtained from window.loca-
tion.href, which is an attacker-con-
trolled source (7). Since there is no vali-
dation, this code path results in an XSS 
vulnerability.

Many opportunities for mistakes. 
Figures 1a and 1b show only two small 
slices of a hypothetical Web applica-
tion. In reality, a large, nontrivial Web 
application will have hundreds if not 
thousands of branching and merging 
data flows into injection-prone sinks. 
Each such flow can potentially result in 
an XSS bug if a developer makes a mis-
take related to validation or escaping. 

Exploring all these data flows and 
asserting absence of XSS is a monu-
mental task for a security reviewer, es-
pecially considering an ever-changing 
code base of a project under active 
development. Automated tools that 
employ heuristics to statically analyze 
data flows in a code base can help. In 
our experience at Google, however, 
they do not substantially increase con-
fidence in review-based assessments, 
since they are necessarily incomplete 
in their reasoning and subject to both 
false positives and false negatives. Fur-
thermore, they have similar difficulties 
as human reviewers with reasoning 
about whole-system data flows across 
multiple system components, using 
a variety of programming languages, 
RPC (remote procedure call) mecha-
nisms, and so forth, and involving 
flows traversing multiple time contexts 
across data stores. 

The primary  
goal of this 
approach is to 
limit code that 
could potentially 
give rise to XSS 
vulnerabilities  
to a very small 
fraction of  
an application’s  
code base.
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user-profile field).  
Unfortunately, there is an XSS bug: 

the markup in profile.aboutHtml 
ultimately originates in a rich-text edi-
tor implemented in browser-side code, 
but there is no server-side enforce-
ment preventing an attacker from in-
jecting malicious markup using a tam-
pered-with client. This bug could arise 
in practice from a misunderstanding 
between front-end and back-end de-
velopers regarding responsibilities for 
data validation and sanitization.

Reliably Preventing the 
Introduction of XSS Bugs
In our experience in Google’s security 
team, code inspection and testing do 
not ensure, to a reasonably high degree 
of confidence, the absence of XSS bugs 
in large Web applications. Of course, 
both inspection and testing provide 
tremendous value and will typically 
find some bugs in an application (per-
haps even most of the bugs), but it is 
difficult to be sure whether or not they 
discovered all the bugs (or even almost 
all of them).

The primary goal of this approach is 
to limit code that could potentially give 
rise to XSS vulnerabilities to a very small 
fraction of an application’s code base.

A key goal of this approach is to 
drastically reduce the fraction of code 
that could potentially give rise to 
XSS bugs. In particular, with this ap-
proach, an application is structured 
such that most of its code cannot be 
responsible for XSS bugs. The poten-
tial for vulnerabilities is therefore 
confined to infrastructure code such 
as Web application frameworks and 
HTML templating engines, as well 
as small, self-contained application-
specific utility modules. 

A second, equally important goal is 
to provide a developer experience that 
does not add an unacceptable degree 
of friction as compared with existing 
developer workflows. 

Key components of this approach 
are:

˲˲ Inherently safe APIs. Injection-prone 
Web-platform and HTML-rendering 
APIs are encapsulated in wrapper APIs 
designed to be inherently safe against 
XSS in the sense that no use of such 
APIs can result in XSS vulnerabilities.

˲˲ Security type contracts. Special 
types are defined with contracts stipu-

Similar limitations apply to dynam-
ic testing approaches: it is difficult to 
ascertain whether test suites provide 
adequate coverage for whole-system 
data flows.

Templates to the rescue? In prac-
tice, HTML markup, and interpolation 
points therein, are often specified us-
ing HTML templates. Template systems 
expose domain-specific languages for 
rendering HTML markup. An HTML 
markup template induces a function 
from template variables into strings of 
HTML markup.

Figure 1c illustrates the use of an 
HTML markup template (9): this ex-
ample renders a user profile in the 
photo-sharing application, including 
the user’s name, a hyperlink to a per-
sonal blog site, as well as free-form 
text allowing the user to express any 
special interests.

Some template engines support 
automatic escaping, where escaping 
operations are automatically inserted 
around each interpolation point into 
the template. Most template engines’ 
auto-escape facilities are noncontex-
tual and indiscriminately apply HTML 
escaping operations, but do not ac-
count for special HTML contexts such 
as URLs, CSS, and JavaScript. 

Contextually auto-escaping tem-
plate engines6 infer the necessary 
validation and escaping operations re-
quired for the context of each template 
substitution, and therefore account for 
such special contexts.  

Use of contextually auto-escaping 
template systems dramatically reduces 
the potential for XSS vulnerabilities: in 
(9), the substitution of untrustworthy 
values profile.name and profile.
blogUrl into the resulting markup 
cannot result in XSS—the template sys-
tem automatically infers the required 
HTML-escaping and URL-validation. 

XSS bugs can still arise, however, 
in code that does not make use of tem-
plates, as in Figure 1a (1), or that involves 
non-HTML sinks, as in Figure 1b (5).  

Furthermore, developers occasional-
ly need to exempt certain substitutions 
from automatic escaping: in Figure 1c 
(9), escaping of profile.aboutHtml 
is explicitly suppressed because that 
field is assumed to contain a user-sup-
plied message with simple, safe HTML 
markup (to support use of fonts, colors, 
and hyperlinks in the “about myself” 

lating that their values are safe to use 
in specific contexts without further es-
caping and validation.

˲˲ Coding guidelines. Coding guide-
lines restrict direct use of injection-
prone APIs, and ensure security review 
of certain security-sensitive APIs. Ad-
herence to these guidelines can be en-
forced through simple static checks.

Inherently safe APIs. Our goal is 
to provide inherently safe wrapper 
APIs for injection-prone browser-side 
Web platform API sinks, as well as for 
server- and client-side HTML markup 
rendering.

For some APIs, this is straightfor-
ward. For example, the vulnerable as-
signment in Figure 1b (5) can be re-
placed with the use of an inherently 
safe wrapper API, provided by the Ja-
vaScript Closure Library, as shown in 
Figure 2b (5’). The wrapper API vali-
dates at runtime that the supplied URL 
represents either a scheme-less URL or 
one with a known benign scheme.

Using the safe wrapper API ensures  
this code will not result in an XSS 
vulnerability, regardless of the prov-
enance of the assigned URL. Crucially, 
none of the code in (5’) nor its fan-in 
in (6-8) needs to be inspected for XSS 
bugs. This benefit comes at the very 
small cost of a runtime validation that 
is technically unnecessary if (and only 
if) the first branch is taken—the URL 
obtained from the configuration store 
is validated even though it is actually a 
trustworthy value.

In some special scenarios, the run-
time validation imposed by an inher-
ently safe API may be too strict. Such 
cases are accommodated via variants 
of inherently safe APIs that accept 
types with a security contract appropri-
ate for the desired use context. Based 
on their contract, such values are ex-
empt from runtime validation. This 
approach is discussed in more detail in 
the next section.

Strictly contextually auto-escaping 
template engines. Designing an inher-
ently safe API for HTML rendering is 
more challenging. The goal is to devise 
APIs that guarantee that at each sub-
stitution point of data into a particular 
context within trusted HTML markup, 
data is appropriately validated, sani-
tized, and/or escaped, unless it can be 
demonstrated that a specific data item 
is safe to use in that context based on 
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Figure 1. XSS vulnerabilities in a hypothetical Web application.
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(a) Vulnerable code of a hypothetical photo-sharing application.

(b) Another slice of the photo-sharing application.

(c) Using an HTML markup template. 
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sanitizer to remove any markup that 
may result in script execution renders 
it safe to use in HTML context and 
thus produces a value that satisfies the 
SafeHtml type contract.

To actually create values of these 
types, unchecked conversion factory 
methods are provided that consume 
an arbitrary string and return an in-
stance of a given wrapper type (for ex-
ample, SafeHtml or SafeUrl) with-
out applying any runtime sanitization 
or escaping.  

Every use of such unchecked con-
versions must be carefully security re-
viewed to ensure that in all possible 
program states, strings passed to the 
conversion satisfy the resulting type’s 
contract, based on context-specific 
processing or construction. As such, 
unchecked conversions should be used 
as rarely as possible, and only in scenar-
ios where their use is readily reasoned 
about for security-review purposes.  

For example, in Figure 2c, the un-
checked conversion is encapsulated 
in a library (12’’) along with the HTML 
sanitizer implementation on whose 
correctness its use depends, permitting 
security review and testing in isolation.

Coding guidelines. For this ap-
proach to be effective, it must ensure 
developers never write application 
code that directly calls potentially in-
jection-prone sinks, and that they in-
stead use the corresponding safe wrap-
per API.  Furthermore, it must ensure  
uses of unchecked conversions are de-
signed with reviewability in mind, and 
are in fact security reviewed. Both con-
straints represent coding guidelines 
with which all of an application’s code 
base must comply.

In our experience, automated en-
forcement of coding guidelines is 
necessary even in moderate-size proj-
ects—otherwise, violations are bound 
to creep in over time. 

At Google we use the open source  
error-prone static checker1 (https://
goo.gl/SQXCvw), which is integrated 
into Google’s Java tool chain, and a fea-
ture of Google’s open source Closure 
Compiler (https://goo.gl/UyMVzp) to  
whitelist uses of specific methods 
and properties in JavaScript. Errors 
arising from use of a “banned” API 
include references to documentation 
for the corresponding safe API, ad-
vising developers on how to address 

its provenance or prior validation, sani-
tization, or escaping.

These inherently safe APIs are cre-
ated by strengthening the concept of 
contextually auto-escaping template 
engines6 into SCAETEs (strictly contex-
tually auto-escaping template engines). 
Essentially, a SCAETE places two addi-
tional constraints on template code:

˲˲ Directives that disable or modify the 
automatically inferred contextual es-
caping and validation are not permitted.

˲˲ A template may use only sub-tem-
plates that recursively adhere to the 
same constraint.

Security type contracts. In the form 
just described, SCAETEs do not ac-
count for scenarios where template 
parameters are intended to be used 
without validation or escaping, such 
as aboutHtml in Figure 1c—the 
SCAETE unconditionally validates 
and escapes all template parameters, 
and disallows directives to disable the 
auto-escaping mechanism.

Such use cases are accommodated 
through types whose contracts stipu-
late their values are safe to use in cor-
responding HTML contexts, such as 
“inner HTML,” hyperlink URLs, ex-
ecutable resource URLs, and so forth. 
Type contracts are informal: a value 
satisfies a given type contract if it is 
known that it has been validated, sani-
tized, escaped, or constructed in a way 
that guarantees its use in the type’s tar-
get context will not result in attacker-
controlled script execution. Whether 
or not this is indeed the case is estab-
lished by expert reasoning about code 
that creates values of such types, based 
on expert knowledge of the relevant 
behaviors of the Web platform.8 As will 
be seen, such security-sensitive code 
is encapsulated in a small number of 
special-purpose libraries; application 
code uses those libraries but is itself 
not relied upon to correctly create in-
stances of such types and hence does 
not need to be security-reviewed. 

The following are examples of types 
and type contracts in use:

˲˲ SafeHtml. A value of type 
SafeHtml, converted to string, will not 
result in attacker-controlled script ex-
ecution when used as HTML markup.

˲˲ SafeUrl. Values of this type will 
not result in attacker-controlled script 
execution when dereferenced as hy-
perlink URLs.

˲˲ TrustedResourceUrl. Values 
 of this type are safe to use as the 
URL of an executable or “control” re-
source, such as the src attribute of a 
<script> element, or the source of a 
CSS style sheet. Essentially, this type 
promises that its value is the URL of a 
resource that is itself trustworthy.

These types are implemented as 
simple wrapper objects containing the 
underlying string value. Type member-
ship in general cannot be established 
by runtime predicate, and it is the  
responsibility of the types’ security-
reviewed factory methods and builders 
to guarantee the type contract of any 
instance they produce. Type member-
ship can be based on processing (for 
example, validation or sanitization), 
construction, and provenance, or a 
combination thereof.

SCAETEs use security contracts to 
designate exemption from automatic 
escaping: a substituted value is not sub-
ject to runtime escaping if the value is of 
a type whose contract supports its safe 
use in the substitution’s HTML context.

Templates processed by a SCAETE 
give rise to functions that guaran-
tee to emit HTML markup that will 
not result in XSS, assuming template 
parameters adhere to their security 
contracts, if applicable. Indeed, the 
result of applying a SCAETE-induced 
template function itself satisfies the 
SafeHtml type contract.

Figure 2c shows the application of 
SCAETE and security type contracts to 
the code slice of Figure 1c. Strict con-
textual escaping of the template in (9) 
disallows use of the noAutoescape 
directive. Simply removing it, however, 
would enable the automatic escaping 
of this value, which is in this case unde-
sired. Instead, we change the aboutH-
tml field of the profile object to have 
SafeHtml type, which is exempt from 
automatic escaping. The use of this 
type is threaded through the system 
(indicated by the color green), across 
RPCs all the way to the value’s origin in 
back-end code (12’).

Unchecked conversions. Of course, 
eventually we need to create the re-
quired value of type SafeHtml. In 
the example, the corresponding field 
in persistent storage contains HTML 
markup that may be maliciously sup-
plied by an attacker. Passing this un-
trusted markup through an HTML 
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Figure 2. Preventing XSS through use of inherently safe APIs.
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(a) Replacing ad-hoc concatenation of HTML markup with a strict template.

(b) A safe wrapper API.

(c) Using a type to represent safe HTML markup. 
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Using such APIs 
prevents XSS bugs 
and largely relieves 
developers from 
thinking about and 
explicitly specifying 
escaping and  
data validation.

dressed by generally applied contex-
tual data validation and escaping as 
ensured by our design patterns, and 
these need to be addressed at other 
layers in Web application frame-
works or in the design of individual 
Web applications.7

Developer impact. Comparing the 
vulnerable code slices in figures 1a–
1c with their safe counterparts in fig-
ures 2a–2c shows our approach does 
not impose significant changes in de-
veloper workflow, nor major changes 
to code. For example, in Figure 2b 
(5'), we simply use a safe wrapper in-
stead of the “raw” Web-platform API; 
otherwise, this code and its fan-in re-
main unchanged.

The coding guidelines do require 
developers to use safe APIs to generate 
HTML markup, such as the strict tem-
plate in Figure 2a (1'). In return, how-
ever, using such APIs prevents XSS bugs 
and largely relieves developers from 
thinking about and explicitly specifying 
escaping and data validation.

Only in Figure 2c is a more signifi-
cant change to the application required: 
the type of the aboutHtml field changes 
from String to SafeHtml, and use of 
this type is threaded through RPCs from 
back end to front end. Even here, the re-
quired changes are relatively confined: 
a change in the field’s type and the ad-
dition of a call to the HtmlSanitizer 
library in back end code (12').

Such scenarios tend to be rare in 
typical Web applications; in the vast 
majority of uses the automatic runtime 
validation and escaping is functionally 
correct: most values of data flows into 
user-interface markup, both applica-
tion-controlled and user-input-derived, 
tend to represent plain text, regular 
http/https URLs, and other values 
that validate and/or escape cleanly.

Practical Application
This design pattern has been applied in 
several open source and proprietary Web 
application frameworks and template 
engines in use at Google: support for 
strict contextual auto-escaping has been 
added to Closure Templates (https://goo/
gl/Y4G9LK), AngularJS (https://goo.gl/
RvQvXb), as well as a Google-proprietary 
templating system. Security engineers 
and infrastructure developers at Google 
have also implemented libraries of types 
such as SafeHtml and SafeUrl, and 

the error. The review requirement for 
uses of unchecked conversions is en-
forced via a package-visibility mecha-
nism provided by Google’s distributed 
build system.3

If tool-chain-integrated checks 
were not available, coding guidelines 
could be enforced through simpler 
lint-like tools.

In the photo-sharing example, such 
checks would raise errors for the as-
signments to innerHTML and lo-
cation.href in figures 1a–1c and 
would advise the developer to use a 
corresponding inherently safe API in-
stead. For assignments to innerHTML, 
this typically means replacing ad hoc 
concatenation of HTML markup with 
a strict template, rendered directly into 
the DOM element by the template sys-
tem’s runtime, as shown in Figure 2a.

Putting It All Together
Revisiting the code slices of the exam-
ple applications after they have been 
brought into adherence with the cod-
ing guideline shows (figures 2a–2c) 
that uses of injection-prone data sinks 
have been replaced with correspond-
ing inherently safe APIs in (1'), (5'), 
(9') and (10’). Now, none of these code 
snippets can result in an XSS bug, and 
neither they nor their fan-in need to 
be inspected during a security review.

The only piece of code left requir-
ing security code review (aside from 
infrastructure code such as the imple-
mentation of the SCAETE, its runtime, 
and API wrapper libraries) is the Html-
Sanitizer package (12"), and specifi-
cally the package-local fan-in into the 
unchecked conversion to SafeHtml. 
Correctness of this conversion relies 
solely on the correctness of the HTML 
sanitizer, and this package can be secu-
rity reviewed and tested in isolation. If 
a library is shared across multiple ap-
plications, its review cost is amortized 
among users.

Of course, there are limitations to 
the guarantees this approach can pro-
vide: first, the security reviewer may 
miss bugs in the security-relevant por-
tion of the code (template systems, 
markup sanitizers, and so forth); sec-
ond, application code may use con-
structs such as reflection that violate 
encapsulation of the types we rely on; 
finally, some classes of XSS bugs (in 
practice, relatively rare) cannot be ad-
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practice

added inherently safe APIs to the Google 
Web Toolkit (https://goo.gl/dGk5G8), 
the JavaScript Closure Library (https:// 
goo.gl/7nbXCg), and various Google-pro-
prietary libraries and frameworks.

Decrease in incidence of XSS bugs. 
It is challenging to derive precise sta-
tistics regarding the impact of any 
particular approach to bug preven-
tion: our design patterns prevent XSS 
bugs from being introduced in the first 
place, but we do not know how many 
bugs would have been introduced 
without their use. 

We can, however, make observa-
tions based on bug counts in existing 
large projects that adopted our ap-
proach over time. Such observations 
can be considered anecdotal only, 
since bug counts are likely influenced 
by many variables such as code size 
and complexity and security-related 
developer education. Nevertheless, the 
observations suggest our approach sig-
nificantly contributes to notable reduc-
tions in XSS vulnerabilities.

Several development teams of 
flagship Google applications have 
adopted these design patterns and 
coding guidelines. They have estab-
lished static enforcement that all 
HTML markup is produced by strictly 
contextually auto-escaped templates, 
and they have disallowed direct use of 
certain injection-prone Web-platform 
APIs such as innerHTML.

One of the largest and most com-
plex of these applications, using more 
than 1,000 HTML templates in the 
Closure Templates language, migrated 
to strict auto-escaping in early 2013. 
Throughout 2012 (before migration), 
31 XSS bugs were filed in Google’s bug 
tracker against this application. Post-
migration, only four XSS bugs were 
filed in the year to mid-2014, and none 
at all in the first half of 2014. For anoth-
er large application (also using more 
than 1,000 templates) whose migration 
is still in progress, there was a reduc-
tion from 21 to nine XSS bugs during 
the same time period.

Even without full compliance with 
the coding guidelines, some benefits 
can be realized: as the fraction of com-
pliant code increases, the fraction of 
code that could be responsible for vul-
nerabilities shrinks, and confidence 
in the absence of bugs increases. 
While there is little reason not to write 

new code entirely in adherence to the 
guidelines, we can choose not to refac-
tor certain existing code if the cost of 
refactoring exceeds benefits and if we 
already have confidence in that code’s 
security through other means (for ex-
ample, intensive review and testing). 

Conclusion
Software design can be used to isolate 
the potential for XSS vulnerabilities 
into a very small portion of an applica-
tion’s code base. This makes it practi-
cal to intensively security-review and 
test just those portions of the code, re-
sulting in a high degree of confidence 
that a Web application as a whole is 
not vulnerable to XSS bugs. Our ap-
proach is practically applicable to 
large, complex, real-world Web appli-
cations, and it has resulted in signifi-
cant reduction of XSS bugs in several 
development projects.

This approach to what is funda-
mentally a difficult problem involving 
whole-system data flows incorporates 
two key principles:

˲˲ Based on the observation that in 
typical Web apps, it is functionally 
correct to conservatively runtime-es-
cape and -validate the vast majority 
of data flowing into injection-prone 
sinks, we choose to treat all string-
typed values as potentially untrust-
worthy and subject to runtime valida-
tion and escaping, regardless of their 
provenance. This design choice alto-
gether obviates the need for whole-
program reasoning about the vast ma-
jority of whole-system data flows in a 
typical Web application.  

˲˲ Only in scenarios where default, 
runtime validation and escaping is 
functionally incorrect, we employ 
type contracts to convey that certain 
values are already safe to use in a 
given context. This use of types per-
mits compositional reasoning about 
whole-system data flows and allows 
security experts to review security-
critical code in isolation, based on 
package-local reasoning.

Our coding guidelines impose cer-
tain constraints on application code 
(though they typically require only lim-
ited changes to existing code). In con-
trast, many existing approaches to the 
prevention and detection of XSS aim 
to be applicable to existing, unmodi-
fied code. This requirement makes 

the problem much more difficult, and 
generally requires the use of complex 
whole-program static and/or dynamic 
data-flow analysis techniques. For an 
overview of existing work in this area, 
see Mike Samuel et al.6 Relaxing this 
requirement negates the need for 
special-purpose tools and technolo-
gies (such as runtime taint tracking or 
whole-program static analysis), allow-
ing us to rely solely on the combina-
tion of software design, coding guide-
lines enforceable by very simple static 
checks, existing language-native type 
systems, and a small enhancement to 
existing contextually auto-escaping 
template systems. Thus, our approach 
can be used in applications written in 
a variety of programming languages, 
without placing special requirements 
on tool chains, build systems, or run-
time environments.	
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