
38 COMMUNICATIONS OF THE ACM | SEPTEMBER 2014 | VOL. 57 | NO. 9

practice
DOI:10.1145/2643134

 Article development led by
 queue.acm.org

Preventing script injection vulnerabilities
through software design.

BY CHRISTOPH KERN

SCRIPT INJECTION VULNERABILITIES are a bane of
Web application development: deceptively simple in
cause and remedy, they are nevertheless surprisingly
difficult to prevent in large-scale Web development.

Cross-site scripting (XSS)2,7,8 arises when insufficient
data validation, sanitization, or escaping within a Web
application allow an attacker to cause browser-side

execution of malicious JavaScript in
the application’s context. This injected
code can then do whatever the attacker
wants, using the privileges of the vic-
tim. Exploitation of XSS bugs results
in complete (though not necessarily
persistent) compromise of the victim’s
session with the vulnerable applica-
tion. This article provides an overview
of how XSS vulnerabilities arise and
why it is so difficult to avoid them in
real-world Web application software
development. Software design pat-
terns developed at Google to address
the problem are then described.

A key goal of these design patterns

Securing
the
Tangled
Web

http://dx.doi.org/10.1145/2643134

SEPTEMBER 2014 | VOL. 57 | NO. 9 | COMMUNICATIONS OF THE ACM 39

I
M

A
G

E
 B

Y
 P

H
O

T
O

B
A

N
K

 G
A

L
L

E
R

Y

is to confine the potential for XSS
bugs to a small fraction of an applica-
tion’s code base, significantly improv-
ing one’s ability to reason about the
absence of this class of security bugs.
In several software projects within
Google, this approach has resulted in a
substantial reduction in the incidence
of XSS vulnerabilities.

Most commonly, XSS vulnerabili-
ties result from insufficiently validat-
ing, sanitizing, or escaping strings that
are derived from an untrusted source
and passed along to a sink that inter-
prets them in a way that may result in
script execution.

Common sources of untrustworthy
data include HTTP request parame-
ters, as well as user-controlled data lo-
cated in persistent data stores. Strings
are often concatenated with or inter-
polated into larger strings before as-
signment to a sink. The most frequent-
ly encountered sinks relevant to XSS
vulnerabilities are those that interpret
the assigned value as HTML markup,
which includes server-side HTTP re-
sponses of MIME-type text/html, and
the Element.prototype.innerHTML
Document Object Model (DOM)8 prop-
erty in browser-side JavaScript code.

Figure 1a shows a slice of vulner-

able code from a hypothetical photo-
sharing application. Like many mod-
ern Web applications, much of its
user-interface logic is implemented in
browser-side JavaScript code, but the
observations made in this article trans-
fer readily to applications whose UI is
implemented via traditional server-
side HTML rendering.

In code snippet (1) in the figure,
the application generates HTML
markup for a notification to be shown
to a user when another user invites
the former to view a photo album.
The generated markup is assigned to
the innerHTML property of a DOM

40 COMMUNICATIONS OF THE ACM | SEPTEMBER 2014 | VOL. 57 | NO. 9

practice

main page. If the login resulted from
a session time-out, however, the app
navigates back to the URL the user
had visited before the time-out. Using
a common technique for short-term
state storage in Web applications,
this URL is encoded in a parameter of
the current URL.

The page navigation is implement-
ed via assignment to the window.lo-
cation.href DOM property, which
browsers interpret as instruction to
navigate the current window to the
provided URL. Unfortunately, navi-
gating a browser to a URL of the form
javascript:attackScript causes
execution of the URL’s body as Java
Script. In this scenario, the target
URL is extracted from a parameter of
the current URL, which is generally
under attacker control (a malicious
page visited by a victim can instruct
the browser to navigate to an attack-
er-chosen URL).

Thus, this code is also vulnerable
to XSS. To fix the bug, it is necessary to
validate that the URL will not result in
script execution when dereferenced, by
ensuring that its scheme is benign—
for example, https.

Why Is XSS So Difficult to Avoid?
Avoiding the introduction of XSS into
nontrivial applications is a difficult
problem in practice: XSS remains
among the top vulnerabilities in Web
applications, according to the Open
Web Application Security Project
(OWASP);4 within Google it is the most
common class of Web application vul-
nerabilities among those reported un-
der Google’s Vulnerability Reward Pro-
gram (https://goo.gl/82zcPK).

Traditionally, advice (including my
own) on how to prevent XSS has largely
focused on:

˲˲ Training developers how to treat
(by sanitization, validation, and/or es-
caping) untrustworthy values interpo-
lated into HTML markup.2,5

˲˲ Security-reviewing and/or testing
code for adherence to such guidance.

In our experience at Google, this ap-
proach certainly helps reduce the inci-
dence of XSS, but for even moderately
complex Web applications, it does not
prevent introduction of XSS to a rea-
sonably high degree of confidence. We
see a combination of factors leading to
this situation.

element (a node in the hierarchical
object representation of UI elements
in a browser window), resulting in its
evaluation and rendering.

The notification contains the album’s
title, chosen by the second user. A mali-
cious user can create an album titled:

<script>attackScript;</script>

Since no escaping or validation is
applied, this attacker-chosen HTML is
interpolated as-is into the markup gen-
erated in code snippet (1). This markup
is assigned to the innerHTML sink,
and hence evaluated in the context of
the victim’s session, executing the at-
tacker-chosen JavaScript code.

To fix this bug, the album’s title
must be HTML-escaped before use in
markup, ensuring that it is interpret-

ed as plain text, not markup. HTML-
escaping replaces HTML metacharac-
ters such as <, >, ", ', and & with corre-
sponding character entity references
or numeric character references: <,
>, ", ', and &. The
result will then be parsed as a sub-
string in a text node or attribute value
and will not introduce element or at-
tribute boundaries.

As noted, most data flows with a
potential for XSS are into sinks that
interpret data as HTML markup. But
other types of sinks can result in XSS
bugs as well: Figure 1b shows anoth-
er slice of the previously mentioned
photo-sharing application, respon-
sible for navigating the user interface
after a login operation. After a fresh
login, the app navigates to a precon-
figured URL for the application’s

The following code snippet intends to populate a DOM element with markup for a
hyperlink (an HTML anchor element):

var escapedCat = goog.string.htmlEscape(category);
var jsEscapedCat = goog.string.escapeString(escapedCat);
catElem.innerHTML = '<a onclick="createCategoryList(\'' +
 jsEscapedCat + '\')">' + escapedCat + '';

The anchor element’s click-event handler, which is invoked by the browser when
a user clicks on this UI element, is set up to call a JavaScript function with the value of
category as an argument. Before interpolation into the HTML markup, the value of
category is HTML-escaped using an escaping function from the JavaScript Closure
Library. Furthermore, it is JavaScript-string-literal-escaped (replacing ' with \' and
so forth) before interpolation into the string literal within the onclick handler’s
JavaScript expression. As intended, for a value of Flowers & Plants for variable
category, the resulting HTML markup is:

 Flowers & Plants

So where’s the bug? Consider a value for category of:

');attackScript();//

Passing this value through htmlEscape results in:

');attackScript();//

because htmlEscape escapes the single quote into an HTML character reference.
After this, JavaScript-string-literal escaping is a no-op, since the single quote at the
beginning of the page is already HTML-escaped. As such, the resulting markup becomes:

 ');attackScript();//

When evaluating this markup, a browser will first HTML-unescape the value of the
onclick attribute before evaluation as a JavaScript expression. Hence, the JavaScript
expression that is evaluated results in execution of the attacker’s script:

createCategoryList('');attackScript();//')

Thus, the underlying bug is quite subtle: the programmer invoked the appropriate
escaping functions, but in the wrong order.

A Subtle XSS Bug

SEPTEMBER 2014 | VOL. 57 | NO. 9 | COMMUNICATIONS OF THE ACM 41

practice

Subtle security considerations.
As seen, the requirements for secure
handling of an untrustworthy value
depend on the context in which the
value is used. The most commonly
encountered context is string inter-
polation within the content of HTML
markup elements; here, simple
HTML-escaping suffices to prevent
XSS bugs. Several special contexts,
however, apply to various DOM ele-
ments and within certain kinds of
markup, where embedded strings are
interpreted as URLs, Cascading Style
Sheets (CSS) expressions, or JavaS-
cript code. To avoid XSS bugs, each of
these contexts requires specific vali-
dation or escaping, or a combination
of the two.2,5 The accompanying side-
bar, “A Subtle XSS Bug,” shows this
can be quite tricky to get right.

Complex, difficult-to-reason-about
data flows. Recall that XSS arises from
flows of untrustworthy, unvalidated/es-
caped data into injection-prone sinks.
To assert the absence of XSS bugs in
an application, a security reviewer
must first find all such data sinks, and
then inspect the surrounding code for
context-appropriate validation and es-
caping of data transferred to the sink.
When encountering an assignment
that lacks validation and escaping, the
reviewer must backward-trace this data
flow until one of the following situa-
tions can be determined:

˲˲ The value is entirely under applica-
tion control and hence cannot result in
attacker-controlled injection.

˲˲ The value is validated, escaped,
or otherwise safely constructed some-
where along the way.

˲˲ The value is in fact not correctly
validated and escaped, and an XSS vul-
nerability is likely present.

Let’s inspect the data flow into
the innerHTML sink in code snippet
(1) in Figure 1a. For illustration pur-
poses, code snippets and data flows
that require investigation are shown
in red. Since no escaping is applied
to sharedAlbum.title, we trace its
origin to the albums entity (4) in per-
sistent storage, via Web front-end code
(2). This is, however, not the data’s ulti-
mate origin—the album name was pre-
viously entered by a different user (that
is, originated in a different time con-
text). Since no escaping was applied to
this value anywhere along its flow from

an ultimately untrusted source, an XSS
vulnerability arises.

Similar considerations apply to the
data flows in Figure 1b: no validation
occurs immediately prior to the as-
signment to window.location.href
in (5), so back-tracing is necessary. In
code snippet (6), the code exploration
branches: in the true branch, the value
originates in a configuration entity in
the data store (3) via the Web front end
(8); this value can be assumed applica-
tion-controlled and trustworthy and is
safe to use without further validation.
It is noteworthy that the persistent
storage contains both trustworthy and
untrustworthy data in different enti-
ties of the same schema—no blanket
assumptions can be made about the
provenance of stored data.

In the else-branch, the URL origi-
nates from a parameter of the current
URL, obtained from window.loca-
tion.href, which is an attacker-con-
trolled source (7). Since there is no vali-
dation, this code path results in an XSS
vulnerability.

Many opportunities for mistakes.
Figures 1a and 1b show only two small
slices of a hypothetical Web applica-
tion. In reality, a large, nontrivial Web
application will have hundreds if not
thousands of branching and merging
data flows into injection-prone sinks.
Each such flow can potentially result in
an XSS bug if a developer makes a mis-
take related to validation or escaping.

Exploring all these data flows and
asserting absence of XSS is a monu-
mental task for a security reviewer, es-
pecially considering an ever-changing
code base of a project under active
development. Automated tools that
employ heuristics to statically analyze
data flows in a code base can help. In
our experience at Google, however,
they do not substantially increase con-
fidence in review-based assessments,
since they are necessarily incomplete
in their reasoning and subject to both
false positives and false negatives. Fur-
thermore, they have similar difficulties
as human reviewers with reasoning
about whole-system data flows across
multiple system components, using
a variety of programming languages,
RPC (remote procedure call) mecha-
nisms, and so forth, and involving
flows traversing multiple time contexts
across data stores.

The primary
goal of this
approach is to
limit code that
could potentially
give rise to XSS
vulnerabilities
to a very small
fraction of
an application’s
code base.

42 COMMUNICATIONS OF THE ACM | SEPTEMBER 2014 | VOL. 57 | NO. 9

practice

user-profile field).
Unfortunately, there is an XSS bug:

the markup in profile.aboutHtml
ultimately originates in a rich-text edi-
tor implemented in browser-side code,
but there is no server-side enforce-
ment preventing an attacker from in-
jecting malicious markup using a tam-
pered-with client. This bug could arise
in practice from a misunderstanding
between front-end and back-end de-
velopers regarding responsibilities for
data validation and sanitization.

Reliably Preventing the
Introduction of XSS Bugs
In our experience in Google’s security
team, code inspection and testing do
not ensure, to a reasonably high degree
of confidence, the absence of XSS bugs
in large Web applications. Of course,
both inspection and testing provide
tremendous value and will typically
find some bugs in an application (per-
haps even most of the bugs), but it is
difficult to be sure whether or not they
discovered all the bugs (or even almost
all of them).

The primary goal of this approach is
to limit code that could potentially give
rise to XSS vulnerabilities to a very small
fraction of an application’s code base.

A key goal of this approach is to
drastically reduce the fraction of code
that could potentially give rise to
XSS bugs. In particular, with this ap-
proach, an application is structured
such that most of its code cannot be
responsible for XSS bugs. The poten-
tial for vulnerabilities is therefore
confined to infrastructure code such
as Web application frameworks and
HTML templating engines, as well
as small, self-contained application-
specific utility modules.

A second, equally important goal is
to provide a developer experience that
does not add an unacceptable degree
of friction as compared with existing
developer workflows.

Key components of this approach
are:

˲˲ Inherently safe APIs. Injection-prone
Web-platform and HTML-rendering
APIs are encapsulated in wrapper APIs
designed to be inherently safe against
XSS in the sense that no use of such
APIs can result in XSS vulnerabilities.

˲˲ Security type contracts. Special
types are defined with contracts stipu-

Similar limitations apply to dynam-
ic testing approaches: it is difficult to
ascertain whether test suites provide
adequate coverage for whole-system
data flows.

Templates to the rescue? In prac-
tice, HTML markup, and interpolation
points therein, are often specified us-
ing HTML templates. Template systems
expose domain-specific languages for
rendering HTML markup. An HTML
markup template induces a function
from template variables into strings of
HTML markup.

Figure 1c illustrates the use of an
HTML markup template (9): this ex-
ample renders a user profile in the
photo-sharing application, including
the user’s name, a hyperlink to a per-
sonal blog site, as well as free-form
text allowing the user to express any
special interests.

Some template engines support
automatic escaping, where escaping
operations are automatically inserted
around each interpolation point into
the template. Most template engines’
auto-escape facilities are noncontex-
tual and indiscriminately apply HTML
escaping operations, but do not ac-
count for special HTML contexts such
as URLs, CSS, and JavaScript.

Contextually auto-escaping tem-
plate engines6 infer the necessary
validation and escaping operations re-
quired for the context of each template
substitution, and therefore account for
such special contexts.

Use of contextually auto-escaping
template systems dramatically reduces
the potential for XSS vulnerabilities: in
(9), the substitution of untrustworthy
values profile.name and profile.
blogUrl into the resulting markup
cannot result in XSS—the template sys-
tem automatically infers the required
HTML-escaping and URL-validation.

XSS bugs can still arise, however,
in code that does not make use of tem-
plates, as in Figure 1a (1), or that involves
non-HTML sinks, as in Figure 1b (5).

Furthermore, developers occasional-
ly need to exempt certain substitutions
from automatic escaping: in Figure 1c
(9), escaping of profile.aboutHtml
is explicitly suppressed because that
field is assumed to contain a user-sup-
plied message with simple, safe HTML
markup (to support use of fonts, colors,
and hyperlinks in the “about myself”

lating that their values are safe to use
in specific contexts without further es-
caping and validation.

˲˲ Coding guidelines. Coding guide-
lines restrict direct use of injection-
prone APIs, and ensure security review
of certain security-sensitive APIs. Ad-
herence to these guidelines can be en-
forced through simple static checks.

Inherently safe APIs. Our goal is
to provide inherently safe wrapper
APIs for injection-prone browser-side
Web platform API sinks, as well as for
server- and client-side HTML markup
rendering.

For some APIs, this is straightfor-
ward. For example, the vulnerable as-
signment in Figure 1b (5) can be re-
placed with the use of an inherently
safe wrapper API, provided by the Ja-
vaScript Closure Library, as shown in
Figure 2b (5’). The wrapper API vali-
dates at runtime that the supplied URL
represents either a scheme-less URL or
one with a known benign scheme.

Using the safe wrapper API ensures
this code will not result in an XSS
vulnerability, regardless of the prov-
enance of the assigned URL. Crucially,
none of the code in (5’) nor its fan-in
in (6-8) needs to be inspected for XSS
bugs. This benefit comes at the very
small cost of a runtime validation that
is technically unnecessary if (and only
if) the first branch is taken—the URL
obtained from the configuration store
is validated even though it is actually a
trustworthy value.

In some special scenarios, the run-
time validation imposed by an inher-
ently safe API may be too strict. Such
cases are accommodated via variants
of inherently safe APIs that accept
types with a security contract appropri-
ate for the desired use context. Based
on their contract, such values are ex-
empt from runtime validation. This
approach is discussed in more detail in
the next section.

Strictly contextually auto-escaping
template engines. Designing an inher-
ently safe API for HTML rendering is
more challenging. The goal is to devise
APIs that guarantee that at each sub-
stitution point of data into a particular
context within trusted HTML markup,
data is appropriately validated, sani-
tized, and/or escaped, unless it can be
demonstrated that a specific data item
is safe to use in that context based on

SEPTEMBER 2014 | VOL. 57 | NO. 9 | COMMUNICATIONS OF THE ACM 43

practice

Figure 1. XSS vulnerabilities in a hypothetical Web application.

Browser Web-App Frontend Application Backends

(4)

(3)
(1)

Application data store

(2)

Browser Web-App Frontend Application Backends

(4)

(3)

(5)

(6)

(7)

Application data store

(8)

Browser Web-App Frontend Application Backends

(12)

(13)

(9)

(10)

Profile Store

(11)

(a) Vulnerable code of a hypothetical photo-sharing application.

(b) Another slice of the photo-sharing application.

(c) Using an HTML markup template.

44 COMMUNICATIONS OF THE ACM | SEPTEMBER 2014 | VOL. 57 | NO. 9

practice

sanitizer to remove any markup that
may result in script execution renders
it safe to use in HTML context and
thus produces a value that satisfies the
SafeHtml type contract.

To actually create values of these
types, unchecked conversion factory
methods are provided that consume
an arbitrary string and return an in-
stance of a given wrapper type (for ex-
ample, SafeHtml or SafeUrl) with-
out applying any runtime sanitization
or escaping.

Every use of such unchecked con-
versions must be carefully security re-
viewed to ensure that in all possible
program states, strings passed to the
conversion satisfy the resulting type’s
contract, based on context-specific
processing or construction. As such,
unchecked conversions should be used
as rarely as possible, and only in scenar-
ios where their use is readily reasoned
about for security-review purposes.

For example, in Figure 2c, the un-
checked conversion is encapsulated
in a library (12’’) along with the HTML
sanitizer implementation on whose
correctness its use depends, permitting
security review and testing in isolation.

Coding guidelines. For this ap-
proach to be effective, it must ensure
developers never write application
code that directly calls potentially in-
jection-prone sinks, and that they in-
stead use the corresponding safe wrap-
per API. Furthermore, it must ensure
uses of unchecked conversions are de-
signed with reviewability in mind, and
are in fact security reviewed. Both con-
straints represent coding guidelines
with which all of an application’s code
base must comply.

In our experience, automated en-
forcement of coding guidelines is
necessary even in moderate-size proj-
ects—otherwise, violations are bound
to creep in over time.

At Google we use the open source
error-prone static checker1 (https://
goo.gl/SQXCvw), which is integrated
into Google’s Java tool chain, and a fea-
ture of Google’s open source Closure
Compiler (https://goo.gl/UyMVzp) to
whitelist uses of specific methods
and properties in JavaScript. Errors
arising from use of a “banned” API
include references to documentation
for the corresponding safe API, ad-
vising developers on how to address

its provenance or prior validation, sani-
tization, or escaping.

These inherently safe APIs are cre-
ated by strengthening the concept of
contextually auto-escaping template
engines6 into SCAETEs (strictly contex-
tually auto-escaping template engines).
Essentially, a SCAETE places two addi-
tional constraints on template code:

˲˲ Directives that disable or modify the
automatically inferred contextual es-
caping and validation are not permitted.

˲˲ A template may use only sub-tem-
plates that recursively adhere to the
same constraint.

Security type contracts. In the form
just described, SCAETEs do not ac-
count for scenarios where template
parameters are intended to be used
without validation or escaping, such
as aboutHtml in Figure 1c—the
SCAETE unconditionally validates
and escapes all template parameters,
and disallows directives to disable the
auto-escaping mechanism.

Such use cases are accommodated
through types whose contracts stipu-
late their values are safe to use in cor-
responding HTML contexts, such as
“inner HTML,” hyperlink URLs, ex-
ecutable resource URLs, and so forth.
Type contracts are informal: a value
satisfies a given type contract if it is
known that it has been validated, sani-
tized, escaped, or constructed in a way
that guarantees its use in the type’s tar-
get context will not result in attacker-
controlled script execution. Whether
or not this is indeed the case is estab-
lished by expert reasoning about code
that creates values of such types, based
on expert knowledge of the relevant
behaviors of the Web platform.8 As will
be seen, such security-sensitive code
is encapsulated in a small number of
special-purpose libraries; application
code uses those libraries but is itself
not relied upon to correctly create in-
stances of such types and hence does
not need to be security-reviewed.

The following are examples of types
and type contracts in use:

˲˲ SafeHtml. A value of type
SafeHtml, converted to string, will not
result in attacker-controlled script ex-
ecution when used as HTML markup.

˲˲ SafeUrl. Values of this type will
not result in attacker-controlled script
execution when dereferenced as hy-
perlink URLs.

˲˲ TrustedResourceUrl. Values
 of this type are safe to use as the
URL of an executable or “control” re-
source, such as the src attribute of a
<script> element, or the source of a
CSS style sheet. Essentially, this type
promises that its value is the URL of a
resource that is itself trustworthy.

These types are implemented as
simple wrapper objects containing the
underlying string value. Type member-
ship in general cannot be established
by runtime predicate, and it is the
responsibility of the types’ security-
reviewed factory methods and builders
to guarantee the type contract of any
instance they produce. Type member-
ship can be based on processing (for
example, validation or sanitization),
construction, and provenance, or a
combination thereof.

SCAETEs use security contracts to
designate exemption from automatic
escaping: a substituted value is not sub-
ject to runtime escaping if the value is of
a type whose contract supports its safe
use in the substitution’s HTML context.

Templates processed by a SCAETE
give rise to functions that guaran-
tee to emit HTML markup that will
not result in XSS, assuming template
parameters adhere to their security
contracts, if applicable. Indeed, the
result of applying a SCAETE-induced
template function itself satisfies the
SafeHtml type contract.

Figure 2c shows the application of
SCAETE and security type contracts to
the code slice of Figure 1c. Strict con-
textual escaping of the template in (9)
disallows use of the noAutoescape
directive. Simply removing it, however,
would enable the automatic escaping
of this value, which is in this case unde-
sired. Instead, we change the aboutH-
tml field of the profile object to have
SafeHtml type, which is exempt from
automatic escaping. The use of this
type is threaded through the system
(indicated by the color green), across
RPCs all the way to the value’s origin in
back-end code (12’).

Unchecked conversions. Of course,
eventually we need to create the re-
quired value of type SafeHtml. In
the example, the corresponding field
in persistent storage contains HTML
markup that may be maliciously sup-
plied by an attacker. Passing this un-
trusted markup through an HTML

SEPTEMBER 2014 | VOL. 57 | NO. 9 | COMMUNICATIONS OF THE ACM 45

practice

Figure 2. Preventing XSS through use of inherently safe APIs.

Browser Web-App Frontend Application Backends

Application data store

(4)

(3)(2)

(1′)

(1″)

(8)

(4)

(3)

Browser Web-App Frontend Application Backends

(5′)

(6)

(13)

Browser Web-App Frontend Application Backends
(9′)

(10′)

(11)

(12″)

Profile Store

(12′)

(a) Replacing ad-hoc concatenation of HTML markup with a strict template.

(b) A safe wrapper API.

(c) Using a type to represent safe HTML markup.

46 COMMUNICATIONS OF THE ACM | SEPTEMBER 2014 | VOL. 57 | NO. 9

practice

Using such APIs
prevents XSS bugs
and largely relieves
developers from
thinking about and
explicitly specifying
escaping and
data validation.

dressed by generally applied contex-
tual data validation and escaping as
ensured by our design patterns, and
these need to be addressed at other
layers in Web application frame-
works or in the design of individual
Web applications.7

Developer impact. Comparing the
vulnerable code slices in figures 1a–
1c with their safe counterparts in fig-
ures 2a–2c shows our approach does
not impose significant changes in de-
veloper workflow, nor major changes
to code. For example, in Figure 2b
(5'), we simply use a safe wrapper in-
stead of the “raw” Web-platform API;
otherwise, this code and its fan-in re-
main unchanged.

The coding guidelines do require
developers to use safe APIs to generate
HTML markup, such as the strict tem-
plate in Figure 2a (1'). In return, how-
ever, using such APIs prevents XSS bugs
and largely relieves developers from
thinking about and explicitly specifying
escaping and data validation.

Only in Figure 2c is a more signifi-
cant change to the application required:
the type of the aboutHtml field changes
from String to SafeHtml, and use of
this type is threaded through RPCs from
back end to front end. Even here, the re-
quired changes are relatively confined:
a change in the field’s type and the ad-
dition of a call to the HtmlSanitizer
library in back end code (12').

Such scenarios tend to be rare in
typical Web applications; in the vast
majority of uses the automatic runtime
validation and escaping is functionally
correct: most values of data flows into
user-interface markup, both applica-
tion-controlled and user-input-derived,
tend to represent plain text, regular
http/https URLs, and other values
that validate and/or escape cleanly.

Practical Application
This design pattern has been applied in
several open source and proprietary Web
application frameworks and template
engines in use at Google: support for
strict contextual auto-escaping has been
added to Closure Templates (https://goo/
gl/Y4G9LK), AngularJS (https://goo.gl/
RvQvXb), as well as a Google-proprietary
templating system. Security engineers
and infrastructure developers at Google
have also implemented libraries of types
such as SafeHtml and SafeUrl, and

the error. The review requirement for
uses of unchecked conversions is en-
forced via a package-visibility mecha-
nism provided by Google’s distributed
build system.3

If tool-chain-integrated checks
were not available, coding guidelines
could be enforced through simpler
lint-like tools.

In the photo-sharing example, such
checks would raise errors for the as-
signments to innerHTML and lo-
cation.href in figures 1a–1c and
would advise the developer to use a
corresponding inherently safe API in-
stead. For assignments to innerHTML,
this typically means replacing ad hoc
concatenation of HTML markup with
a strict template, rendered directly into
the DOM element by the template sys-
tem’s runtime, as shown in Figure 2a.

Putting It All Together
Revisiting the code slices of the exam-
ple applications after they have been
brought into adherence with the cod-
ing guideline shows (figures 2a–2c)
that uses of injection-prone data sinks
have been replaced with correspond-
ing inherently safe APIs in (1'), (5'),
(9') and (10’). Now, none of these code
snippets can result in an XSS bug, and
neither they nor their fan-in need to
be inspected during a security review.

The only piece of code left requir-
ing security code review (aside from
infrastructure code such as the imple-
mentation of the SCAETE, its runtime,
and API wrapper libraries) is the Html-
Sanitizer package (12"), and specifi-
cally the package-local fan-in into the
unchecked conversion to SafeHtml.
Correctness of this conversion relies
solely on the correctness of the HTML
sanitizer, and this package can be secu-
rity reviewed and tested in isolation. If
a library is shared across multiple ap-
plications, its review cost is amortized
among users.

Of course, there are limitations to
the guarantees this approach can pro-
vide: first, the security reviewer may
miss bugs in the security-relevant por-
tion of the code (template systems,
markup sanitizers, and so forth); sec-
ond, application code may use con-
structs such as reflection that violate
encapsulation of the types we rely on;
finally, some classes of XSS bugs (in
practice, relatively rare) cannot be ad-

SEPTEMBER 2014 | VOL. 57 | NO. 9 | COMMUNICATIONS OF THE ACM 47

practice

added inherently safe APIs to the Google
Web Toolkit (https://goo.gl/dGk5G8),
the JavaScript Closure Library (https://
goo.gl/7nbXCg), and various Google-pro-
prietary libraries and frameworks.

Decrease in incidence of XSS bugs.
It is challenging to derive precise sta-
tistics regarding the impact of any
particular approach to bug preven-
tion: our design patterns prevent XSS
bugs from being introduced in the first
place, but we do not know how many
bugs would have been introduced
without their use.

We can, however, make observa-
tions based on bug counts in existing
large projects that adopted our ap-
proach over time. Such observations
can be considered anecdotal only,
since bug counts are likely influenced
by many variables such as code size
and complexity and security-related
developer education. Nevertheless, the
observations suggest our approach sig-
nificantly contributes to notable reduc-
tions in XSS vulnerabilities.

Several development teams of
flagship Google applications have
adopted these design patterns and
coding guidelines. They have estab-
lished static enforcement that all
HTML markup is produced by strictly
contextually auto-escaped templates,
and they have disallowed direct use of
certain injection-prone Web-platform
APIs such as innerHTML.

One of the largest and most com-
plex of these applications, using more
than 1,000 HTML templates in the
Closure Templates language, migrated
to strict auto-escaping in early 2013.
Throughout 2012 (before migration),
31 XSS bugs were filed in Google’s bug
tracker against this application. Post-
migration, only four XSS bugs were
filed in the year to mid-2014, and none
at all in the first half of 2014. For anoth-
er large application (also using more
than 1,000 templates) whose migration
is still in progress, there was a reduc-
tion from 21 to nine XSS bugs during
the same time period.

Even without full compliance with
the coding guidelines, some benefits
can be realized: as the fraction of com-
pliant code increases, the fraction of
code that could be responsible for vul-
nerabilities shrinks, and confidence
in the absence of bugs increases.
While there is little reason not to write

new code entirely in adherence to the
guidelines, we can choose not to refac-
tor certain existing code if the cost of
refactoring exceeds benefits and if we
already have confidence in that code’s
security through other means (for ex-
ample, intensive review and testing).

Conclusion
Software design can be used to isolate
the potential for XSS vulnerabilities
into a very small portion of an applica-
tion’s code base. This makes it practi-
cal to intensively security-review and
test just those portions of the code, re-
sulting in a high degree of confidence
that a Web application as a whole is
not vulnerable to XSS bugs. Our ap-
proach is practically applicable to
large, complex, real-world Web appli-
cations, and it has resulted in signifi-
cant reduction of XSS bugs in several
development projects.

This approach to what is funda-
mentally a difficult problem involving
whole-system data flows incorporates
two key principles:

˲˲ Based on the observation that in
typical Web apps, it is functionally
correct to conservatively runtime-es-
cape and -validate the vast majority
of data flowing into injection-prone
sinks, we choose to treat all string-
typed values as potentially untrust-
worthy and subject to runtime valida-
tion and escaping, regardless of their
provenance. This design choice alto-
gether obviates the need for whole-
program reasoning about the vast ma-
jority of whole-system data flows in a
typical Web application.

˲˲ Only in scenarios where default,
runtime validation and escaping is
functionally incorrect, we employ
type contracts to convey that certain
values are already safe to use in a
given context. This use of types per-
mits compositional reasoning about
whole-system data flows and allows
security experts to review security-
critical code in isolation, based on
package-local reasoning.

Our coding guidelines impose cer-
tain constraints on application code
(though they typically require only lim-
ited changes to existing code). In con-
trast, many existing approaches to the
prevention and detection of XSS aim
to be applicable to existing, unmodi-
fied code. This requirement makes

the problem much more difficult, and
generally requires the use of complex
whole-program static and/or dynamic
data-flow analysis techniques. For an
overview of existing work in this area,
see Mike Samuel et al.6 Relaxing this
requirement negates the need for
special-purpose tools and technolo-
gies (such as runtime taint tracking or
whole-program static analysis), allow-
ing us to rely solely on the combina-
tion of software design, coding guide-
lines enforceable by very simple static
checks, existing language-native type
systems, and a small enhancement to
existing contextually auto-escaping
template systems. Thus, our approach
can be used in applications written in
a variety of programming languages,
without placing special requirements
on tool chains, build systems, or run-
time environments.	

 Related articles
 on queue.acm.org

Fault Injection in Production

John Allspaw
http://queue.acm.org/detail.cfm?id=2353017

High Performance Web Sites

Steve Souders
http://queue.acm.org/detail.cfm?id=1466450

Vicious XSS
George Neville-Neil
http://queue.acm.org/detail.cfm?id=1113330

References
1.	 Aftandilian, E., Sauciuc, R., Priya, S. and Krishnan,

S. Building useful program analysis tools using an
extensible Java compiler. International Working
Conference on Source Code Analysis and Manipulation
(2012), 14–23.

2.	 Daswani, N., Kern, C. and Kesavan, A. Foundations of
Security: What Every Programmer Needs to Know.
Apress, 2007.

3.	 Morgenthaler, J.D., Gridnev, M., Sauciuc, R. and
Bhansali, S. Searching for build debt: Experiences
managing technical debt at Google. Third International
Workshop on Managing Technical Debt (2012), 1–6.

4.	 OWASP. Top 10 List, 2013; https://www.owasp.org/
index.php/Top_10_2013-Top_10.

5.	 OWASP. XSS (cross site scripting) prevention cheat
sheet, 2014; https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet.

6.	 Samuel, M., Saxena, P. and Song, D. Context-sensitive
auto-sanitization in Web templating languages
using type qualifiers. Proceedings of the 18th ACM
Conference on Computer and Communications
Security (2011), 587–600.

7.	 Su, Z. and Wasserman, G. The essence of command
injection attacks in Web applications. In Proceedings
of POPL (2006); http//dl.acm.org/citation.
cfm?=1111070

8.	 Zalewski, M. The Tangled Web: A Guide to Securing
Modern Web Applications. No Starch Press, 2012.

Christoph Kern (xtof@google.com) is an information
security engineer at Google. His primary focus is on
designing APIs and frameworks that make it easy for
developers to write secure software and eliminate or
reduce the risk of accidentally introducing security bugs.

Copyright held by author.

