P1260 工程规划「差分约束板子题」

该篇博客介绍了一个基于图论的工程规划问题,通过将限制条件转化为边权值,构建一个带权有向图,并利用SPFA(Shortest Path Faster Algorithm)最短路径算法寻找满足所有限制条件的解。当找到解时,要求最早开始的任务与工程起始时间相同,即至少有一个任务的开始时间为0。博主提供了C++代码实现来演示这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P1260 工程规划

题目描述:

n个工程,每个工程都有一个起始时间,均是非负数,m个限制条件,每个限制条件形如 T i − T j < = b T_i-T_j<=b TiTj<=b,问你能否找到一种解满足所以限制条件,如果有,则要使最早进行的那个任务和整个工程的起始时间相同,也就是说,T1,T2,…,Tn中至少有一个为0

思路:

板子题

化简后得到 T i < = T j + b Ti<=T_j+b Ti<=Tj+b,也就是从ji建立一个权值为 b的边

然后建立一个超级源点0,跑最短路,输出的时候要先找出最小值,然后每个答案都要减去最小值再输出

#include <bits/stdc++.h>
using namespace std;

#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 1000000007
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)

typedef long long ll;
typedef pair <int,int> pii;

#define MAX 300000 + 50
int n, m;
int a, b, c;

int tot;
int head[MAX];
struct ran{
    int to, nex, val;
}tr[MAX];
inline void add(int u, int v, int c){
    tr[++tot].to = v;
    tr[tot].val = c;
    tr[tot].nex = head[u];
    head[u] = tot;
}

int dis[MAX];
bool vis[MAX];
int cnt[MAX];

void SPFA(){
    queue<int>q;
    for(int i = 1; i <= n; ++i){
        q.push(i);
        vis[i] = 1;
        dis[1] = 0;
    }
    while (!q.empty()) {
        int u = q.front();q.pop();vis[u] = 0;
        for(int i = head[u]; i; i = tr[i].nex){
            int v = tr[i].to;
            if(dis[v] > dis[u] + tr[i].val){
                dis[v] = dis[u] + tr[i].val;
                cnt[v] = cnt[u] + 1;
                if(cnt[v] >= n){
                    cout << "NO SOLUTION\n";
                    return;
                }
                if(!vis[v]){
                    q.push(v);
                    vis[v] = 1;
                }
            }
        }
    }
    int minx = inf;
    for(int i = 1; i <= n; ++i)minx = min(minx, dis[i]);
    for(int i = 1; i <= n; ++i)cout << dis[i] - minx << endl;
    
}

void work(){
    cin >> n >> m;
    while (m--) {
        cin >> a >> b >> c;
        add(b, a, c);
    }
    SPFA();
}


int main(){
    io;
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值