P4878 [USACO05DEC]Layout G「差分约束」「思维」「前缀和」

本文介绍了一种利用SPFA(Shortest Path Faster Algorithm)算法解决竞赛编程问题的策略。具体问题是关于奶牛的排列,要求满足好基友和情敌之间的关系条件。通过构建有向图并调整边的权重,将问题转化为寻找1号奶牛到N号奶牛的最大距离。在处理过程中,分别解释了如何判断无法满足所有条件(返回-1)和1号奶牛与N号奶牛间无直接影响(返回-2)的情况。最后,给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P4878 USACO05DEC Layout G

题目描述:

n个奶牛,奶牛按照编号顺序来排队,可以有多头奶牛在一个位置

有两种关系,一种是好基友关系,一种是情敌关系

好基友关系要求二者之间的距离小于等于某个数

情敌关系要求二者之间的距离大于等于某个数

给出所有的好基友关系和情敌关系,问满足所有条件时,1号奶牛和N号奶牛之间的距离最大为多少

思路:

问最大距离,用最短路,转换成<=

还是用前缀和来处理,不过这次同一个位置可能有多个奶牛,那我们只需要满足 s u m [ i + 1 ] − s u m [ i ] > = 0 sum[i + 1] - sum[i]>=0 sum[i+1]sum[i]>=0就行,也就是 s u m [ i ] < = s u m [ i + 1 ] + 0 sum[i]<=sum[i+1] + 0 sum[i]<=sum[i+1]+0,就从i+1i连一条权值为0的边

好基友关系是 s u m [ b ] − s u m [ a ] < = c sum[b] - sum[a] <= c sum[b]sum[a]<=c,也就是 s u m [ b ] < = s u m [ a ] + c sum[b]<=sum[a] + c sum[b]<=sum[a]+c,从ab连一条权值为c的边

情敌关系是sum[b] - sum[a] >= c,也就是 s u m [ a ] < = s u m [ b ] − c sum[a] <= sum[b] - c sum[a]<=sum[b]c,从ba连一条权值为-c的边

想好怎么建图了以后,难点有来了,什么时候是-1,什么时候是-2

-1很简答,就是不能满足所有的条件,即建立超级源点后存在负环

出现-2就是说明1和n之间没有关系印象,此时可以放到无限远,也就是说我们只需要把1号点作为源点,看看能不能跑出n的最短路,如果不能就是-2,否则就输出最短路就行

Q:那为什么判-1的时候要建立超级源点,而判-2的时候不需要?

因为判断-1是要满足所有牛的条件,而判-2只是要看1和n之间的距离能否达到无穷大

#include <bits/stdc++.h>
using namespace std;

#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 1000000007
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)

typedef long long ll;
typedef pair <int,int> pii;

#define MAX 300000 + 50
int n, m1, m2;
int a, b, c;

int tot;
int head[MAX];
struct ran{
    int to, nex, val;
}tr[MAX];
inline void add(int u, int v, int c){
    tr[++tot].to = v;
    tr[tot].val = c;
    tr[tot].nex = head[u];
    head[u] = tot;
}
int dis[MAX];
bool vis[MAX];
int cnt[MAX];
bool SPFA(int s){
    mem(dis, inf);
    mem(cnt, 0);
    mem(vis, 0);
    queue<int>q;
    q.push(s);vis[s] = 1;
    dis[s] = 0;
    while (!q.empty()) {
        int u = q.front();q.pop();vis[u] = 0;
        for(int i = head[u]; i; i = tr[i].nex){
            int v = tr[i].to;
            if(dis[v] > dis[u] + tr[i].val){
                dis[v] = dis[u] + tr[i].val;
                cnt[v] = cnt[u] + 1;
                if(cnt[v] >= n){
                    return false;
                }
                if(!vis[v]){
                    vis[v] = 1;
                    q.push(v);
                }
            }
        }
    }
    return true;
}

void work(){
    cin >> n >> m1 >> m2;
    for(int i = 1; i <= n; ++i)add(0, i, 0);
    for(int i = 2; i <= n; ++i){
        add(i, i - 1, 0);
    }
    while (m1--) {
        cin >> a >> b >> c;
        add(a, b, c);
    }
    while (m2--) {
        cin >> a >> b >> c;
        add(b, a, -c);
    }
    if(!SPFA(0))cout << -1 << endl;
    else{
        SPFA(1);
        if(dis[n] == inf)cout << -2 << endl;
        else cout << dis[n] << endl;
    }
}


int main(){
    io;
    work();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值