简介
事情是这样的:
你永远也不会建立自己的邮件服务器(或 CRM 系统),或者在大多数情况下,建立自己的 LLM。
你会吗?
然而,我看到很多公司都在尝试建立自己的 RAG 管道。
开发人员展示由 Langchain 驱动的 RAG 管道——却不知道投入生产时他们将要经历的数千小时的痛苦。
不是开玩笑——我刚刚在波士顿的一个会议上遇到了一家初创公司,他们实际上使用由 Langchain 提供支持的 RAG 管道推出了他们的 MVP——然后几天后——他们就坐在那里从技术栈中撤出 Langchain。
这太糟糕了——他们没有把精力集中在产品市场契合度或其他推动业务发展的因素上,而是重新设计他们的技术堆栈——这真是浪费开发人员的精力——这几乎就像他们正在构建自己的 LLM,而不是使用 OpenAI API。
这里有一个提示:RAG 即服务。
推荐文章
-
《PatchTST:时间序列预测的突破 从理论到实践,了解 PatchTST 算法并将其与 N-BEATS 和 N-HiTS 一起应用在 Python 中)》 权重1,PatchTST、N-BEATS