1. 前言
deepseek 爆火出圈,以下简称DS。连我爸妈快60的人了过年都在聊DS,我再不体验一下,都要被父母嘲笑了。今天简单分享一下,如何在本地MAC电脑部署和运行deepseek,实现AI对话的功能,后面再研究DS的实现。
2. 安装部署
2.1 准备 Ollama
Ollama 是一个开源的本地大语言模型运行框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。
打开浏览器,访问 Ollama 官方网站:Download Ollama on macOS,下载适用于MAC 的安装程序。下载地址为:https://ollama.com/download/Ollama-darwin.zip。下载完成后,双击安装包并按照提示完成安装。
安装完成后,通过以下命令验证:
ollama --version
如果显示版本号,则说明安装成功。
2.2 选择合适的DS模型
从这个网站去找deepseek-r1合适的模型
关于不同尺寸的DeepSeek-R1版本介绍、参数量、特点、使用场景和硬件配置,可以参考下表:
DeepSeek模型版本 | 参数量 | 特点 | 适用场景 | 硬件配置 |
---|---|---|---|---|
DeepSeek-R1-1.5B | 1.5B | 轻量级模型,参数量少,模型规模小 | 适用于轻量级任务,如短文本生成、基础问答等 | 4核处理器、8G内存,无需显卡 |
DeepSeek-R1-7B | 7B | 平衡型模型,性能较好,硬件需求适中 | 适合中等复杂度任务,如文案撰写、表格处理、统计分析等 | 8核处理器、16G内存,Ryzen7或更高,RTX 3060(12GB)或更高 |
DeepSeek-R1-8B | 8B | 性能略强于7B模型,适合更高精度需求 | 适合需要更高精度的轻量级任务,比如代码生成、逻辑推理等 | 8核处理器、16G内存,Ryzen7或更高,RTX 3060(12GB)或4060 |
DeepSeek-R1-14B | 14B | 高性能模型,擅长复杂的任务,如数学推理、代码生成 | 可处理复杂任务,如长文本生成、数据分析等 | i9-13900K或更高、32G内存,RTX 4090(24GB)或A5000 |
DeepSeek-R1-32B | 32B | 专业级模型,性能强大,适合高精度任务 | 适合超大规模任务,如语言建模、大规模训练、金融预测等 | Xeon 8核、128GB内存或更高,2-4张A100(80GB)或更高 |
DeepSeek-R1-70B | 70B | 顶级模型,性能最强,适合大规模计算和高复杂任务 | 适合高精度专业领域任务,比如多模态任务预处理。这些任务对硬件要求非常高,需要高端的 CPU 和显卡,适合预算充足的企业或研究机构使用 | Xeon 8核、128GB内存或更高,8张A100/H100(80GB)或更高 |
DeepSeek-R1-671B | 671B | 超大规模模型,性能卓越,推理速度快,适合极高精度需求 | 适合国家级 / 超大规模 AI 研究,如气候建模、基因组分析等,以及通用人工智能探索 | 64核、512GB或更高,8张A100/H100 |
如何选择?资源有限选择选1.5B-14B,性价比更高;运行企业复杂任务选择32B-70B平衡性能与成本;尖端科研/高精度需求:优先671B,但需配套基础设施。
2.3 下载模型(非必须)
说明:
1. 这里使用
deepseek-r1:1.5b
模型进行演示,因为这个模型最小,仅有 1.1GB,本地运行也对硬件要求不高,但回答质量不太行,实际使用可以根据自己的电脑性能换成其他型号的模型。2. 也可以跳过下载直接运行,会自动开始下载,但模型较大一时半会儿下载不完。
上面2.1 Ollama 安装成功后打开命令行终端,因为我的自用mac,资源有限,先尝试下最小的模型,粘贴ollama pull deepseek-r1:1.5b
这行命令到窗口中,按回车执行,开始下载对应模型。
下载完成后可查看已下载的模型
2.4 直接运行DS模型
直接打开终端,ollama run deepseek-r1:1.5b
一行命令就可以运行然后开始聊天,ctrl
+ d
退出。
ollama run deepseek-r1:1.5b
2.5 下载Chatbox并配置为本地DeepSeek
2.4 章节其实就已经完成了DS的安装使用了,但为了有更好的交互体验,我们借助Chatbox来搞。
从这个网站下载 Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载
下载后安装即可,安装好打开如下:
选择本地模型,
注意,这里一定不要错成DeepSeek API,这也是初学者经常会选错的,实际上,若选择这个你就找不到你本地的DeepSeek模型。实际正确应该选择OLLAMA API,然后就可以看到我们上一步安装好的
deepseek-r1:1.5b
。
3. 结尾
配置好DeepSeek本地模型之后,就可以实现在断网情况下自由问答了。
可以看到1.5b的效果不是很好,回答的幻化问题很严重,大家感兴趣可以尝试下DS的其他大一点的模型,效果会好很多。我的机器是16GB内存的,试了下7b的的运行效果还可以,更大的我机器就带不动了。