R语言实现拟合神经网络; 神经网络包

本文探讨了神经网络的吸引力,包括反向传播算法和大脑启发的结构。通过R语言,作者详细介绍了如何预处理数据、设置参数并拟合神经网络,以预测郊区房屋价格。与线性模型比较,神经网络在预测medv时表现更优。文章还涉及了交叉验证的重要性,展示了神经网络在不同数据划分下的性能,并强调了神经网络模型解释性的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络一直是迷人的机器学习模型之一,不仅因为花哨的反向传播算法,而且还因为它们的复杂性(考虑到许多隐藏层的深度学习)和受大脑启发的结构。

神经网络并不总是流行,部分原因是它们在某些情况下仍然计算成本高昂,部分原因是与支持向量机(SVM)等简单方法相比,它们似乎没有产生更好的结果。然而,最近神经网络变得流行起来。

 在这篇文章中,我们将拟合神经网络,并将线性模型作为比较。

数据集

数据集是郊区房屋价格数据的集合。我们的目标是使用所有其他可用的连续变量来预测自住房屋(medv)的中位数。

首先,我们需要检查是否缺少数据点,否则我们需要填充数据集。

apply(data,2,function(x)sum(is.na(x)))
 

然后我们拟合线性回归模型并在测试集上进行测试。

index < -  sample(1:nrow(data),round(0.75 * nrow(data)))
   MSE.lm < -  sum((pr.lm  -  test $ medv)^ 2)/ nrow(test)

sample(x,size)函数简单地从向量输出指定大小的随机选择样本的向量x

准备拟合神经网络

在拟合神经网络之前,需要做一些准备工作。神经网络不容易训练和调整。

作为第一步,我们将解决数据预处理问题。
因此,我们先划分数据:

maxs < 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值