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Abstract

The k-means method is a widely used clustering technique

that seeks to minimize the average squared distance between

points in the same cluster. Although it offers no accuracy

guarantees, its simplicity and speed are very appealing in

practice. By augmenting k-means with a very simple, ran-

domized seeding technique, we obtain an algorithm that is

Θ(log k)-competitive with the optimal clustering. Prelim-

inary experiments show that our augmentation improves

both the speed and the accuracy of k-means, often quite

dramatically.

1 Introduction

Clustering is one of the classic problems in machine
learning and computational geometry. In the popular
k-means formulation, one is given an integer k and a set
of n data points in Rd. The goal is to choose k centers
so as to minimize φ, the sum of the squared distances
between each point and its closest center.

Solving this problem exactly is NP-hard, even with
just two clusters [10], but twenty-five years ago, Lloyd
[20] proposed a local search solution that is still very
widely used today (see for example [1, 11, 15]). Indeed,
a recent survey of data mining techniques states that it
“is by far the most popular clustering algorithm used in
scientific and industrial applications” [5].

Usually referred to simply as k-means, Lloyd’s
algorithm begins with k arbitrary centers, typically
chosen uniformly at random from the data points. Each
point is then assigned to the nearest center, and each
center is recomputed as the center of mass of all points
assigned to it. These two steps (assignment and center
calculation) are repeated until the process stabilizes.

One can check that the total error φ is monotoni-
cally decreasing, which ensures that no clustering is re-
peated during the course of the algorithm. Since there
are at most kn possible clusterings, the process will al-
ways terminate. In practice, very few iterations are usu-
ally required, which makes the algorithm much faster
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than most of its competitors.
Unfortunately, the empirical speed and simplicity

of the k-means algorithm come at the price of accuracy.
There are many natural examples for which the algo-
rithm generates arbitrarily bad clusterings (i.e., φ

φOPT
is

unbounded even when n and k are fixed). Furthermore,
these examples do not rely on an adversarial placement
of the starting centers, and the ratio can be unbounded
with high probability even with the standard random-
ized seeding technique.

In this paper, we propose a way of initializing
k-means by choosing random starting centers with
very specific probabilities. Specifically, we choose a
point p as a center with probability proportional to p’s
contribution to the overall potential. Letting φ denote
the potential after choosing centers in this way, we show
the following.

Theorem 1.1. For any set of data points, E[φ] ≤
8(ln k + 2)φOPT .

This sampling is both fast and simple, and it already
achieves approximation guarantees that k-means can-
not. We propose using it to seed the initial centers
for k-means, leading to a combined algorithm we call
k-means++.

This complements a very recent result of Ostrovsky
et al. [24], who independently proposed much the same
algorithm. Whereas they showed this randomized seed-
ing is O(1)-competitive on data sets following a certain
separation condition, we show it is O(log k)-competitive
on all data sets.

We also show that the analysis for Theorem 1.1 is
tight up to a constant factor, and that it can be eas-
ily extended to various potential functions in arbitrary
metric spaces. In particular, we can also get a sim-
ple O(log k) approximation algorithm for the k-median
objective. Furthermore, we provide preliminary experi-
mental data showing that in practice, k-means++ really
does outperform k-means in terms of both accuracy and
speed, often by a substantial margin.

1.1 Related work As a fundamental problem in
machine learning, k-means has a rich history. Because
of its simplicity and its observed speed, Lloyd’s method
[20] remains the most popular approach in practice,



despite its limited accuracy. The convergence time of
Lloyd’s method has been the subject of a recent series
of papers [2, 4, 8, 14]; in this work we focus on improving
its accuracy.

In the theory community, Inaba et al. [16] were
the first to give an exact algorithm for the k-means
problem, with the running time of O(nkd). Since then, a
number of polynomial time approximation schemes have
been developed (see [9, 13, 19, 21] and the references
therein). While the authors develop interesting insights
into the structure of the clustering problem, their
algorithms are highly exponential (or worse) in k, and
are unfortunately impractical even for relatively small
n, k and d.

Kanungo et al. [17] proposed an O(n3ε−d) algorithm
that is (9 + ε)-competitive. However, n3 compares
unfavorably with the almost linear running time of
Lloyd’s method, and the exponential dependence on d
can also be problematic. For these reasons, Kanungo et
al. also suggested a way of combining their techniques
with Lloyd’s algorithm, but in order to avoid the
exponential dependence on d, their approach sacrifices
all approximation guarantees.

Mettu and Plaxton [22] also achieved a constant-
probability O(1) approximation using a technique called
successive sampling. They match our running time of
O(nkd), but only if k is sufficiently large and the spread
is sufficiently small. In practice, our approach is simpler,
and our experimental results seem to be better in terms
of both speed and accuracy.

Very recently, Ostrovsky et al. [24] independently
proposed an algorithm that is essentially identical to
ours, although their analysis is quite different. Letting
φOPT,k denote the optimal potential for a k-clustering
on a given data set, they prove k-means++ is O(1)-
competitive in the case where φOPT,k

φOPT,k−1
≤ ε2. The

intuition here is that if this condition does not hold,
then the data is not well suited for clustering with the
given value for k.

Combining this result with ours gives a strong
characterization of the algorithm’s performance. In
particular, k-means++ is never worse than O(log k)-
competitive, and on very well formed data sets, it
improves to being O(1)-competitive.

Overall, the seeding technique we propose is similar
in spirit to that used by Meyerson [23] for online facility
location, and Mishra et al. [12] and Charikar et al. [6]
in the context of k-median clustering. However, our
analysis is quite different from those works.

2 Preliminaries

In this section, we formally define the k-means problem,
as well as the k-means and k-means++ algorithms.

For the k-means problem, we are given an integer k
and a set of n data points X ⊂ Rd. We wish to choose
k centers C so as to minimize the potential function,

φ =
∑
x∈X

min
c∈C

‖x− c‖2.

Choosing these centers implicitly defines a clustering
– for each center, we set one cluster to be the set of
data points that are closer to that center than to any
other. As noted above, finding an exact solution to the
k-means problem is NP-hard.

Throughout the paper, we will let COPT denote the
optimal clustering for a given instance of the k-means
problem, and we will let φOPT denote the corresponding
potential. Given a clustering C with potential φ, we
also let φ(A) denote the contribution of A ⊂ X to the
potential (i.e., φ(A) =

∑
x∈A minc∈C‖x− c‖2).

2.1 The k-means algorithm The k-means method
is a simple and fast algorithm that attempts to locally
improve an arbitrary k-means clustering. It works as
follows.

1. Arbitrarily choose k initial centers C = {c1, . . . , ck}.
2. For each i ∈ {1, . . . , k}, set the cluster Ci to be the

set of points in X that are closer to ci than they
are to cj for all j 6= i.

3. For each i ∈ {1, . . . , k}, set ci to be the center of
mass of all points in Ci: ci = 1

|Ci|
∑

x∈Ci
x.

4. Repeat Steps 2 and 3 until C no longer changes.

It is standard practice to choose the initial centers
uniformly at random from X . For Step 2, ties may be
broken arbitrarily, as long as the method is consistent.

Steps 2 and 3 are both guaranteed to decrease φ, so
the algorithm makes local improvements to an arbitrary
clustering until it is no longer possible to do so. To see
that Step 3 does in fact decreases φ, it is helpful to recall
a standard result from linear algebra (see [14]).

Lemma 2.1. Let S be a set of points with center of
mass c(S), and let z be an arbitrary point. Then,∑

x∈S‖x− z‖2 −
∑

x∈S‖x− c(S)‖2 = |S| · ‖c(S)− z‖2.

Monotonicity for Step 3 follows from taking S to be a
single cluster and z to be its initial center.

As discussed above, the k-means algorithm is at-
tractive in practice because it is simple and it is gener-
ally fast. Unfortunately, it is guaranteed only to find a
local optimum, which can often be quite poor.

2.2 The k-means++ algorithm The k-means algo-
rithm begins with an arbitrary set of cluster centers.
We propose a specific way of choosing these centers. At



any given time, let D(x) denote the shortest distance
from a data point x to the closest center we have al-
ready chosen. Then, we define the following algorithm,
which we call k-means++.

1a. Choose an initial center c1 uniformly at random
from X .

1b. Choose the next center ci, selecting ci = x′ ∈ X
with probability D(x′)2P

x∈X D(x)2 .
1c. Repeat Step 1b until we have chosen a total of k

centers.
2-4. Proceed as with the standard k-means algorithm.

We call the weighting used in Step 1b simply “D2

weighting”.

3 k-means++ is O(log k)-competitive

In this section, we prove our main result.

Theorem 3.1. If C is constructed with k-means++,
then the corresponding potential function φ satisfies
E[φ] ≤ 8(ln k + 2)φOPT.

In fact, we prove this holds after only Step 1 of the
algorithm above. Steps 2 through 4 can then only
decrease φ. Not surprisingly, our experiments show this
local optimization is important in practice, although it
is difficult to quantify this theoretically.

Our analysis consists of two parts. First, we show
that k-means++ is competitive in those clusters of COPT

from which it chooses a center. This is easiest in the
case of our first center, which is chosen uniformly at
random.

Lemma 3.1. Let A be an arbitrary cluster in COPT, and
let C be the clustering with just one center, which is
chosen uniformly at random from A. Then, E[φ(A)] =
2φOPT(A).

Proof. Let c(A) denote the center of mass of the data
points in A. By Lemma 2.1, we know that since
COPT is optimal, it must be using c(A) as the center
corresponding to the cluster A. Using the same lemma
again, we see E[φ(A)] is given by,

∑
a0∈A

1
|A|

·

(∑
a∈A

‖a− a0‖2

)

=
1
|A|

∑
a0∈A

(∑
a∈A

‖a− c(A)‖2 + |A| · ‖a0 − c(A)‖2

)
= 2

∑
a∈A

‖a− c(A)‖2,

and the result follows.

Our next step is to prove an analog of Lemma 3.1
for the remaining centers, which are chosen with D2

weighting.

Lemma 3.2. Let A be an arbitrary cluster in COPT, and
let C be an arbitrary clustering. If we add a random
center to C from A, chosen with D2 weighting, then
E[φ(A)] ≤ 8φOPT(A).

Proof. The probability that we choose some fixed a0 as
our center, given that we are choosing our center from
A, is precisely D(a0)

2P
a∈A D(a)2 . Furthermore, after choos-

ing the center a0, a point a will contribute precisely
min(D(a), ‖a− a0‖)2 to the potential. Therefore,

E[φ(A)] =
∑

a0∈A

D(a0)2∑
a∈A D(a)2

∑
a∈A

min(D(a), ‖a− a0‖)2.

Note by the triangle inequality that D(a0) ≤
D(a) + ‖a − a0‖ for all a, a0. From this, the power-
mean inequality1 implies that D(a0)2 ≤ 2D(a)2 +
2‖a − a0‖2. Summing over all a, we then have that
D(a0)2 ≤ 2

|A|
∑

a∈A D(a)2 + 2
|A|
∑

a∈A‖a − a0‖2, and
hence, E[φ(A)] is at most,

2
|A|

·
∑

a0∈A

∑
a∈A D(a)2∑
a∈A D(a)2

·
∑
a∈A

min(D(a), ‖a− a0‖)2

+
2
|A|

·
∑

a0∈A

∑
a∈A‖a− a0‖2∑

a∈A D(a)2
·
∑
a∈A

min(D(a), ‖a− a0‖)2.

In the first expression, we substitute min(D(a), ‖a −
a0‖)2 ≤ ‖a − a0‖2, and in the second expression, we
substitute min(D(a), ‖a − a0‖)2 ≤ D(a)2. Simplifying,
we then have,

E[φ(A)] ≤ 4
|A|

·
∑

a0∈A

∑
a∈A

‖a− a0‖2

= 8φOPT(A).

The last step here follows from Lemma 3.1.

We have now shown that seeding by D2 weighting
is competitive as long as it chooses centers from each
cluster of COPT, which completes the first half of our
argument. We now use induction to show the total error
in general is at most O(log k).

1The power-mean inequality states for any real numbers
a1, · · · , am that Σa2

i ≥ 1
m

(Σai)
2. It follows from the Cauchy-

Schwarz inequality. We are only using the case m = 2 here, but
we will need the general case for Lemma 3.3.



Lemma 3.3. Let C be an arbitrary clustering. Choose
u > 0 “uncovered” clusters from COPT, and let Xu

denote the set of points in these clusters. Also let
Xc = X−Xu. Now suppose we add t ≤ u random centers
to C, chosen with D2 weighting. Let C′ denote the the
resulting clustering, and let φ′ denote the corresponding
potential. Then, E[φ′] is at most,(

φ(Xc) + 8φOPT(Xu)
)
· (1 + Ht) +

u− t

u
· φ(Xu).

Here, Ht denotes the harmonic sum, 1 + 1
2 + · · ·+ 1

t .

Proof. We prove this by induction, showing that if the
result holds for (t − 1, u) and (t − 1, u − 1), then it
also holds for (t, u). Therefore, it suffices to check
t = 0, u > 0 and t = u = 1 as our base cases.

If t = 0 and u > 0, the result follows from the fact
that 1 + Ht = u−t

u = 1. Next, suppose t = u = 1.
We choose our one new center from the one uncovered
cluster with probability exactly φ(Xu)

φ . In this case,
Lemma 3.2 guarantees that E[φ′] ≤ φ(Xc)+8φOPT(Xu).
Since φ′ ≤ φ even if we choose a center from a covered
cluster, we have,

E[φ′] ≤ φ(Xu)
φ

·
(
φ(Xc) + 8φOPT(Xu)

)
+

φ(Xc)
φ

· φ

≤ 2φ(Xc) + 8φOPT(Xu).

Since 1 + Ht = 2 here, we have shown the result holds
for both base cases.

We now proceed to prove the inductive step. It is
convenient here to consider two cases. First suppose we
choose our first center from a covered cluster. As above,
this happens with probability exactly φ(Xc)

φ . Note that
this new center can only decrease φ. Bearing this in
mind, apply the inductive hypothesis with the same
choice of covered clusters, but with t decreased by one.
It follows that our contribution to E[φ′] in this case is
at most,

φ(Xc)
φ

·
((

φ(Xc) + 8φOPT(Xu)
)
· (1 + Ht−1)

+
u− t + 1

u
· φ(Xu)

)
.

On the other hand, suppose we choose our first
center from some uncovered cluster A. This happens
with probability φ(A)

φ . Let pa denote the probability
that we choose a ∈ A as our center, given the center is
somewhere in A, and let φa denote φ(A) after we choose
a as our center. Once again, we apply our inductive
hypothesis, this time adding A to the set of covered
clusters, as well as decreasing both t and u by 1. It

follows that our contribution to E[φOPT] in this case is
at most,

φ(A)
φ

·
∑
a∈A

pa

((
φ(Xc) + φa + 8φOPT(Xu)− 8φOPT(A)

)
· (1 + Ht−1) +

u− t

u− 1
·
(
φ(Xu)− φ(A)

))
≤ φ(A)

φ
·
((

φ(Xc) + 8φOPT(Xu)
)
· (1 + Ht−1)

+
u− t

u− 1
·
(
φ(Xu)− φ(A)

))
.

The last step here follows from the fact that∑
a∈A paφa ≤ 8φOPT(A), which is implied by Lemma

3.2.
Now, the power-mean inequality implies that∑

A⊂Xu
φ(A)2 ≥ 1

u · φ(Xu)2. Therefore, if we sum over
all uncovered clusters A, we obtain a potential contri-
bution of at most,

φ(Xu)
φ

·
(
φ(Xc) + 8φOPT(Xu)

)
· (1 + Ht−1)

+
1
φ
· u− t

u− 1
·
(

φ(Xu)2 − 1
u
· φ(Xu)2

)
=

φ(Xu)
φ

·
((

φ(Xc) + 8φOPT(Xu)
)
· (1 + Ht−1)

+
u− t

u
· φ(Xu)

)
.

Combining the potential contribution to E[φ′] from
both cases, we now obtain the desired bound:

E[φ′] ≤
(
φ(Xc) + 8φOPT(Xu)

)
· (1 + Ht−1)

+
u− t

u
· φ(Xu) +

φ(Xc)
φ

· φ(Xu)
u

≤
(
φ(Xc) + 8φOPT(Xu)

)
·
(

1 + Ht−1 +
1
u

)
+

u− t

u
· φ(Xu).

The inductive step now follows from the fact that 1
u ≤ 1

t .

We specialize Lemma 3.3 to obtain our main result.

Theorem 3.1 If C is constructed with k-means++,
then the corresponding potential function φ satisfies
E[φ] ≤ 8(ln k + 2)φOPT.

Proof. Consider the clustering C after we have com-
pleted Step 1. Let A denote the COPT cluster in which
we chose the first center. Applying Lemma 3.3 with



t = u = k − 1 and with A being the only covered clus-
ter, we have,

E[φOPT] ≤
(
φ(A) + 8φOPT − 8φOPT(A)

)
· (1 + Hk−1).

The result now follows from Lemma 3.1, and from the
fact that Hk−1 ≤ 1 + ln k.

4 A matching lower bound

In this section, we show that the D2 seeding used
by k-means++ is no better than Ω(log k)-competitive
in expectation, thereby proving Theorem 3.1 is tight
within a constant factor.

Fix k, and then choose n, ∆, δ with n � k and ∆ �
δ. We construct X with n points. First choose k centers
c1, c2, . . . , ck such that ‖ci − cj‖2 = ∆2 −

(
n−k

n

)
· δ2

for all i 6= j. Now, for each ci, add data points
xi,1, xi,2, · · · , xi, n

k
arranged in a regular simplex with

center ci, side length δ, and radius
√

n−k
2n · δ. If we do

this in orthogonal dimensions for each i, we then have,

‖xi,i′ − xj,j′‖ =
{

δ if i=j, or
∆ otherwise.

We prove our seeding technique is in expectation
Ω(log k) worse than the optimal clustering in this case.

Clearly, the optimal clustering has centers {ci},
which leads to an optimal potential of φOPT = n−k

2 · δ2.
Conversely, using an induction similar to that of Lemma
3.3, we show D2 seeding cannot match this bound. As
before, we bound the expected potential in terms of
the number of centers left to choose and the number
of uncovered clusters (those clusters of C0 from which
we have not chosen a center).

Lemma 4.1. Let C be an arbitrary clustering on X with
k − t ≥ 1 centers, but with u clusters from COPT

uncovered. Now suppose we add t random centers to
C, chosen with D2 weighting. Let C′ denote the the
resulting clustering, and let φ′ denote the corresponding
potential.

Furthermore, let α = n−k2

n , β = ∆2−2kδ2

∆2 and
H ′

u =
∑u

i=1
k−i
ki . Then, E[φ′] is at least,

αt+1 ·
(
nδ2 · (1 + H ′

u) · β +
(n

k
∆2 − 2nδ2

)
· (u− t)

)
.

Proof. We prove this by induction on t. If t = 0, note
that,

φ′ = φ =
(
n− u · n

k
− k
)
· δ2 + u · n

k
·∆2.

Since n−u· n
k ≥ n

k , we have n−u·n
k−k

n−u·n
k

≥
n
k−k

n
k

= α. Also,
α, β ≤ 1. Therefore,

φ′ ≥ α ·
((

n− u · n

k

)
· δ2 · β + u · n

k
·∆2

)
.

Finally, since nδ2u ≥ u · n
k · δ

2 · β and nδ2u ≥ nδ2H ′
uβ,

we have,

φ′ ≥ α ·
(
nδ2 · (1 + H ′

u) · β +
(n

k
∆2 − 2nδ2

)
· u
)

.

This completes the base case.
We now proceed to prove the inductive step. As

with Lemma 3.3, we consider two cases. The probability
that our first center is chosen from an uncovered cluster
is,

u · n
k ·∆

2

u · n
k ·∆2 + (k − u) · n

k · δ2 − (k − t)δ2

≥ u∆2

u∆2 + (k − u)δ2

≥ α · u∆2

u∆2 + (k − u)δ2
.

Applying our inductive hypothesis with t and u both
decreased by 1, we obtain a potential contribution from
this case of at least,

u∆2

u∆2 + (k − u)δ2
· αt+1 ·

(
nδ2 · (1 + H ′

u−1) · β

+
(n

k
∆2 − 2nδ2

)
· (u− t)

)
.

The probability that our first center is chosen from
a covered cluster is

(k − u) · n
k · δ

2 − (k − t)δ2

u · n
k ·∆2 + (k − u) · n

k · δ2 − (k − t)δ2

≥
(k − u) · n

k · δ
2 − (k − t)δ2

(k − u) · n
k · δ2

· (k − u)δ2

u∆2 + (k − u)δ2

≥ α · (k − u)δ2

u∆2 + (k − u)δ2
.

Applying our inductive hypothesis with t decreased by 1
but with u constant, we obtain a potential contribution
from this case of at least,

(k − u)δ2

u∆2 + (k − u)δ2
· αt+1 ·

(
nδ2 · (1 + H ′

u) · β

+
(n

k
∆2 − 2nδ2

)
· (u− t + 1)

)
.

Therefore, E[φ′] is at least,

αt+1 ·
(
nδ2 · (1 + H ′

u) · β +
(n

k
∆2 − 2nδ2

)
· (u− t)

)
+

αt+1

u∆2 + (k − u)δ2
·
(

(k − u)δ2 ·
(

n

k
∆2 − 2nδ2

)
− u∆2 ·

(
H ′(u)−H ′(u− 1)

)
· nδ2 · β

)
.



However, H ′
u −H ′

u−1 = k−u
ku and β = ∆2−2kδ2

∆2 , so

u∆2 ·
(
H ′(u)−H ′(u− 1)

)
· nδ2 · β

= (k − u)δ2 ·
(n

k
∆2 − 2nδ2

)
,

and the result follows.

As in the previous section, we obtain the desired
result by specializing the induction.

Theorem 4.1. D2 seeding is no better than 2(ln k)-
competitive.

Proof. Suppose a clustering with potential φ is con-
structed using k-means++ on X described above. Ap-
ply Lemma 4.1 with u = t = k − 1 after the first
center has been chosen. Noting that 1 + H ′

k−1 =
1 +

∑k−1
i=1

(
1
i −

1
k

)
= Hk > ln k, we then have,

E[φ] ≥ αkβ · nδ2 · ln k.

Now, fix k and δ but let n and ∆ approach infinity.
Then α and β both approach 1, and the result follows
from the fact that φOPT = n−k

2 · δ2.

5 Generalizations

Although the k-means algorithm itself applies only
in vector spaces with the potential function φ =∑

x∈X minc∈C‖x − c‖2, we note that our seeding tech-
nique does not have the same limitations. In this sec-
tion, we discuss extending our results to arbitrary met-
ric spaces with the more general potential function,
φ[`] =

∑
x∈X minc∈C‖x − c‖` for ` ≥ 1. In particular,

note that the case of ` = 1 is the k-medians potential
function.

These generalizations require only one change to
the algorithm itself. Instead of using D2 seeding, we
switch to D` seeding – i.e., we choose x0 as a center
with probability D(x0)

`P
x∈X D(x)` .

For the analysis, the most important change ap-
pears in Lemma 3.1. Our original proof uses an inner
product structure that is not available in the general
case. However, a slightly weaker result can be proven
using only the triangle inequality.

Lemma 5.1. Let A be an arbitrary cluster in COPT, and
let C be the clustering with just one center, which is cho-
sen uniformly at random from A. Then, E[φ[`](A)] ≤
2`φ

[`]
OPT(A).

Proof. Let c denote the center of A in COPT. Then,

E[φ[`](A)] =
1
|A|

∑
a0∈A

∑
a∈A

‖a− a0‖`

≤ 2`−1

|A|
∑

a0∈A

∑
a∈A

(
‖a− c‖` + ‖a0 − c‖`

)
= 2`φ

[`]
OPT(A).

The second step here follows from the triangle inequality
and the power-mean inequality.

The rest of our upper bound analysis carries
through without change, except that in the proof of
Lemma 3.2, we lose a factor of 2`−1 from the power-
mean inequality, instead of just 2. Putting everything
together, we obtain the general theorem.

Theorem 5.1. If C is constructed with D` seeding,
then the corresponding potential function φ[`] satisfies,
E[φ[`]] ≤ 22`(ln k + 2)φ[`]

OPT.

6 Empirical results

In order to evaluate k-means++ in practice, we have
implemented and tested it in C++ [3]. In this section,
we discuss the results of these preliminary experiments.
We found that D2 seeding substantially improves both
the running time and the accuracy of k-means.

6.1 Datasets We evaluated the performance of
k-means and k-means++ on four datasets.

The first dataset, Norm25, is synthetic. To generate
it, we chose 25 “true” centers uniformly at random
from a 15-dimensional hypercube of side length 500.
We then added points from Gaussian distributions of
variance 1 around each true center. Thus, we obtained
a number of well separated Gaussians with the the true
centers providing a good approximation to the optimal
clustering.

We chose the remaining datasets from real-world
examples off the UC-Irvine Machine Learning Reposi-
tory. The Cloud dataset [7] consists of 1024 points in 10
dimensions, and it is Philippe Collard’s first cloud cover
database. The Intrusion dataset [18] consists of 494019
points in 35 dimensions, and it represents features avail-
able to an intrusion detection system. Finally, the Spam
dataset [25] consists of 4601 points in 58 dimensions,
and it represents features available to an e-mail spam
detection system.

For each dataset, we tested k = 10, 25, and 50.

6.2 Metrics Since we were testing randomized seed-
ing processes, we ran 20 trials for each case. We report



Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++
10 1.365 · 105 8.47% 1.174 · 105 0.93% 0.12 46.72%
25 4.233 · 104 99.96% 1.914 · 104 99.92% 0.90 87.79%
50 7.750 · 103 99.81% 1.474 · 101 0.53% 2.04 −1.62%

Table 1: Experimental results on the Norm25 dataset (n = 10000, d = 15). For k-means, we list the
actual potential and time in seconds. For k-means++, we list the percentage improvement over k-means:
100% ·

(
1− k-means++ value

k-means value

)
.

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++
10 7.921 · 103 22.33% 6.284 · 103 10.37% 0.08 51.09%
25 3.637 · 103 42.76% 2.550 · 103 22.60% 0.11 43.21%
50 1.867 · 103 39.01% 1.407 · 103 23.07% 0.16 41.99%

Table 2: Experimental results on the Cloud dataset (n = 1024, d = 10). For k-means, we list the actual potential
and time in seconds. For k-means++, we list the percentage improvement over k-means.

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++
10 3.387 · 108 93.37% 3.206 · 108 94.40% 63.94 44.49%
25 3.149 · 108 99.20% 3.100 · 108 99.32% 257.34 49.19%
50 3.079 · 108 99.84% 3.076 · 108 99.87% 917.00 66.70%

Table 3: Experimental results on the Intrusion dataset (n = 494019, d = 35). For k-means, we list the actual
potential and time in seconds. For k-means++, we list the percentage improvement over k-means.

Average φ Minimum φ Average T
k k-means k-means++ k-means k-means++ k-means k-means++
10 3.698 · 104 49.43% 3.684 · 104 54.59% 2.36 69.00%
25 3.288 · 104 88.76% 3.280 · 104 89.58% 7.36 79.84%
50 3.183 · 104 95.35% 2.384 · 104 94.30% 12.20 75.76%

Table 4: Experimental results on the Spam dataset (n = 4601, d = 58). For k-means, we list the actual potential
and time in seconds. For k-means++, we list the percentage improvement over k-means.



the minimum and the average potential (actually di-
vided by the number of points), as well as the mean
running time. Our implementations are standard with
no special optimizations.

6.3 Results The results for k-means and k-means++
are displayed in Tables 1 through 4. We list the absolute
results for k-means, and the percentage improvement
achieved by k-means++ (e.g., a 90% improvement in
the running time is equivalent to a factor 10 speedup).
We observe that k-means++ consistently outperformed
k-means, both by achieving a lower potential value, in
some cases by several orders of magnitude, and also by
having a faster running time. The D2 seeding is slightly
slower than uniform seeding, but it still leads to a faster
algorithm since it helps the local search converge after
fewer iterations.

The synthetic example is a case where standard
k-means does very badly. Even though there is an
“obvious” clustering, the uniform seeding will inevitably
merge some of these clusters, and the local search will
never be able to split them apart (see [12] for further
discussion of this phenomenon). The careful seeding
method of k-means++ avoided this problem altogether,
and it almost always attained the optimal clustering on
the synthetic dataset.

The difference between k-means and k-means++
on the real-world datasets was also substantial. In
every case, k-means++ achieved at least a 10% accuracy
improvement over k-means, and it often performed
much better. Indeed, on the Spam and Intrusion
datasets, k-means++ achieved potentials 20 to 1000
times smaller than those achieved by standard k-means.
Each trial also completed two to three times faster, and
each individual trial was much more likely to achieve a
good clustering.

7 Conclusion and future work

We have presented a new way to seed the k-means
algorithm that is O(log k)-competitive with the optimal
clustering. Furthermore, our seeding technique is as fast
and as simple as the k-means algorithm itself, which
makes it attractive in practice. Towards that end,
we ran preliminary experiments on several real-world
datasets, and we observed that k-means++ substantially
outperformed standard k-means in terms of both speed
and accuracy.

Although our analysis of the expected potential
E[φ] achieved by k-means++ is tight to within a con-
stant factor, a few open questions still remain. Most
importantly, it is standard practice to run the k-means
algorithm multiple times, and then keep only the best
clustering found. This raises the question of whether

k-means++ achieves asymptotically better results if it is
allowed several trials. For example, if k-means++ is run
2k times, our arguments can be modified to show it is
likely to achieve a constant approximation at least once.
We ask whether a similar bound can be achieved for a
smaller number of trials.

Also, experiments showed that k-means++ generally
performed better if it selected several new centers during
each iteration, and then greedily chose the one that
decreased φ as much as possible. Unfortunately, our
proofs do not carry over to this scenario. It would be
interesting to see a comparable (or better) asymptotic
result proven here.

Finally, we are currently working on a more thor-
ough experimental analysis. In particular, we are mea-
suring the performance of not only k-means++ and stan-
dard k-means, but also other variants that have been
suggested in the theory community.
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