正则化(Regularization) 是一种用于防止模型过拟合的技术。它通过在损失函数中添加额外的约束项,限制模型的复杂度,从而提高模型的泛化能力。
正则化的主要作用
- 防止过拟合:通过抑制模型对训练数据的过度拟合,提升对未见数据的预测能力。
- 控制模型复杂度:约束模型参数的大小,避免模型过于灵活。
- 提高稳定性:减少模型对输入噪声的敏感性。
常见的正则化方法
1. L1 正则化
- 在损失函数中添加权重绝对值的和。
- 正则项:
- 特点:倾向于使一些权重变为零,具有稀疏性,适合特征选择。
2. L2 正则化
- 在损失函数中添加权重平方和。
- 正则项: