【深度学习】关键技术-正则化(Regularization)

正则化(Regularization) 是一种用于防止模型过拟合的技术。它通过在损失函数中添加额外的约束项,限制模型的复杂度,从而提高模型的泛化能力。


正则化的主要作用

  1. 防止过拟合:通过抑制模型对训练数据的过度拟合,提升对未见数据的预测能力。
  2. 控制模型复杂度:约束模型参数的大小,避免模型过于灵活。
  3. 提高稳定性:减少模型对输入噪声的敏感性。

常见的正则化方法

1. L1 正则化
  • 在损失函数中添加权重绝对值的和。
  • 正则项:

    \text{Regularization Term} = \lambda \sum |w_i|
  • 特点:倾向于使一些权重变为零,具有稀疏性,适合特征选择。
2. L2 正则化
  • 在损失函数中添加权重平方和。
  • 正则项:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值