在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。
为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式:
本期绘图预览:
1. 导入包
我们首先导入本期绘图用到的 R 包:
library(igraph)
2. 准备数据
接下来我们导入绘图用到的数据,在 sciRplot 中给大家提供了测试数据:
data <- sciRplot_data
查看下数据格式:
3. 准备配色
颜色的选择往往是一件让人特别纠结的事情,这里我们直接使用 sciRcolor 来设置配色:
colors <- sciRcolor::pal_scircolor(37)[1:4]
vertex.color <- ifelse(
V(tree) %in% c(1,11), colors[1], ifelse(
V(tree) %in% c(2,3,4,12,13), colors[2], ifelse(
V(tree) %in% c(18,19,20), colors[4], colors[3])))
edge.color <- c(rep(colors[1],3), rep(colors[2],6), rep(colors[1],2),
rep(colors[2],4), rep(colors[3],3))
sciRcolor 是为了 R 语言科研绘图开发的配色工具,包含了 100 种常用配色,详细信息见:
4. 绘制图形
接下来我们通过下面的代码来绘制图形:
plot(tree, layout = layout_as_tree, vertex.label.cex = 2,
vertex.size = 20, vertex.color = vertex.color,
vertex.label.color = 'white',
edge.color = edge.color, edge.arrow.size=0.3)
5. 保存图形
最后我们保存绘制的图形:
png("save/network-tree.png", width = 1800, height = 1800, res=300, units = 'px')
plot(tree, layout = layout_as_tree, vertex.label.cex = 2,
vertex.size = 20, vertex.color = vertex.color,
vertex.label.color = 'white',
edge.color = edge.color, edge.arrow.size=0.3)
dev.off()
sciRplot 介绍
为了解决 R 语言中科研绘图的问题,我推出了 sciRplot 项目。sciRplot 项目包含了以下内容:
① 100 种绘图代码,按照图形类型进行分类,包含 60 种基础绘图和 40 种进阶绘图
② 配备一站式 html文档,包含测试数据,代码一键复制,交互式阅读提高用户体验