写在前面
本系列推文为《R for Data Science (2e)》的中文翻译版本。所有内容都通过开源免费的方式上传至Github,欢迎大家参与贡献,详细信息见:
Books-zh-cn 项目介绍:
Books-zh-cn:开源免费的中文书籍社区
r4ds-zh-cn Github 地址:
https://github.com/Books-zh-cn/r4ds-zh-cn
r4ds-zh-cn 网站地址:
https://books-zh-cn.github.io/r4ds-zh-cn/
目录
-
Welcome
-
Preface to the second edition
Welcome
欢迎
这是第二版的“R for Data Science”的网站。这本书将教您如何使用 R:您将学习如何将数据导入 R,将其转化为最有用的结构,对其进行转换和可视化。
在本书中,您将找到数据科学技能的实践。正如化学家学习如何清洁试管和储存实验室物品一样,您将学习如何清理数据和绘制图表—以及许多其他东西。这些是让数据科学发生的技能,在这里您将找到使用 R 完成这些事情的最佳实践。您将学习如何使用图形语法、文学编程和可重复的研究来节省时间。您还将学习如何管理认知资源,以便在整理、可视化和探索数据时促进发现。
该网站始终是免费的,遵守 CC BY-NC-ND 3.0 协议。如果您想要这本书的实体版,可以在 Amazon 上订购。如果您喜欢免费阅读这本书并愿意回馈,请向 Kākāpō Recovery 捐款:Kākāpō(出现在 R4DS 的封面上)是一种极度濒危的新西兰本土鹦鹉;只剩下 244 只了。
如果您说另一种语言,您可能会对第 1 版的免费翻译感兴趣:
您可以在 R for Data Science (2e) - Solutions to Exercises 中找到本书中的练习的建议答案。
请注意,R4DS 使用 Contributor Code of Conduct。通过为本书做出贡献,您同意遵守其条款。
Preface to the second edition
第二版前言
欢迎来到 “R for Data Science” 第二版! 这是对第一版的重大改进,删除了我们认为不再有用的内容,增加了我们希望在第一版中包含的内容,并且通常更新了文本和代码,以反映最佳实践的变化。我们还非常高兴迎来一位新的合著者:Mine Çetinkaya-Rundel,一位知名的数据科学教育家,也是我们在 Posit(以前被称为 RStudio 的公司)的同事之一。
以下是最重大改变的简要总结:
-
书的第一部分更名为 “Whole game”。该部分的目标是在我们深入细节之前,给您提供关于数据科学”整个游戏”的大致细节。
-
书的第二部分是 “Visualize”。与第一版相比,这部分更全面地介绍了数据可视化工具和最佳实践。获取所有细节的最佳方式仍然是ggplot2 book,但现在 R4DS 也涵盖了更多最重要的技术。
-
书的第三部分现在称为 “Transform”,并新增了关于数字、逻辑向量和缺失值的章节。这些内容以前是数据转换章节的一部分,但需要更多空间来详细介绍所有细节。
-
书的第四部分称为 “Import”。这是一组新的章节,不仅介绍如何读取平面文本文件,还介绍了如何处理电子表格、从数据库获取数据、处理大数据、转换分层数据以及从网站抓取数据。
-
“Program” 部分保留了下来,但进行了全面重写,重点放在了函数编写和迭代的最重要部分。函数编写现在包括有关如何包装 tidyverse 函数(处理整洁评估的挑战)的详细信息,因为在过去几年中,这变得更加简单和重要。我们新增了一章,介绍了在现有的 R 代码中可能遇到的重要基本 R 函数。
-
“modeling” 部分已被移除。我们从来没有足够的空间来充分展示建模,而且现在有更好的资源可用。我们通常建议使用 tidymodels 软件包,并阅读 Max Kuhn 和 Julia Silge 的 Tidy Modeling with R。
-
“Communicate” 部分保留下来,但已经全面更新,使用 Quarto 取代了 R Markdown。本书的这个版本是使用 Quarto 编写的,它显然是未来的工具。
--------------- 本章结束 ---------------
本期翻译贡献:
-
@TigerZ生信宝库
注:本文已开启快捷转载,欢迎大家转载,只需标明文章出处即可。