【Leetcode 322】零钱兑换 —— 动态规划

本文介绍了如何使用动态规划方法解决经典的硬币兑换问题,通过定义状态转移方程和初始化dp数组,找到组成给定金额所需的最少硬币数。如果不能组成,返回-1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

题目分析

经典动态规划问题,更多案例可见 Leetcode 动态规划详解

我们可以使用动态规划解决本题,解题思路:

  1. 状态定义:dp[i]为组成金额 i 所需最少的硬币数量
  2. 状态转移方程:枚举 j,需要从dp[i - coins[j] 转移过来,再算上枚举的这枚硬币数量 1 的贡献,由于要硬币数量最少,所以 dp(i) 为前面能转移过来的状态的最小值加上枚举的硬币数量 1

d p [ i ] = m i n j = 0.. n − 1 ( d p [ i − c o i n s [ j ] ) dp[i] = min_{j=0..n-1}(dp[i - coins[j]) dp[i]=minj=0..n1(dp[icoins[j])

  1. 初始状态dp[0] = coins[0],最终答案为dp[amount]

coins = [1, 2, 3], amount = 6

动态规划一般用于求解具有重叠子问题和最优子结构的问题,例如最长公共子序列、背包问题、最短路径等。重叠子问题指的是在求解问题的过程中,多次用到相同的子问题,最优子结构指的是问题的最优解可以通过子问题的最优解来构造

public class Solution {
    public int coinChange(int[] coins, int amount) {
        int max = amount + 1;
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, max);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            for (int j = 0; j < coins.length; j++) {
                if (coins[j] <= i) {
                    dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值