题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
Accepted
379,366
Submissions
746,809
题意:
在一个m X n的放个区域上,左上角为起点,放置一个机器人,右下角为终点,机器人只能向下或者向右移动,请问有多少种移动路径可以是机器人达到终点。
解法:
这道题用动态规划很合适,因为机器人只会向下或向右移动,所以我们可以知道当我们要从起点走到点(i,j),必然会从(i-1,j)点向右移动一格,或者由(i,j-1)点向下移动一格,所以点(i,j)的路径总数res[i][j]=res[i-1][j]+res[i][j-1]
有了这个动态规划的递推式,我们还需要初始res[0~m-1][0] 和 res[0][0~n-1]为1。
代码:
class Solution {
public int uniquePaths(int m, int n) {
int[][]res=new int[m][n];
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(i==0||j==0){
res[i][j]=1;
}
else{
res[i][j]=res[i-1][j]+res[i][j-1];
}
}
}
return res[m-1][n-1];
}
}