Leetcode 62. Unique Paths (动态规划)

本文探讨了一个mXn网格中,机器人从左上角到右下角的唯一路径计数问题。通过动态规划方法,详细解释了如何计算所有可能的路径数量,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

Accepted

379,366

Submissions

746,809

题意:

在一个m X n的放个区域上,左上角为起点,放置一个机器人,右下角为终点,机器人只能向下或者向右移动,请问有多少种移动路径可以是机器人达到终点。

解法:

这道题用动态规划很合适,因为机器人只会向下或向右移动,所以我们可以知道当我们要从起点走到点(i,j),必然会从(i-1,j)点向右移动一格,或者由(i,j-1)点向下移动一格,所以点(i,j)的路径总数res[i][j]=res[i-1][j]+res[i][j-1]

有了这个动态规划的递推式,我们还需要初始res[0~m-1][0] 和 res[0][0~n-1]为1。

 

代码:

class Solution {
    public int uniquePaths(int m, int n) {
        int[][]res=new int[m][n];
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(i==0||j==0){
                    res[i][j]=1;
                }
                else{
                    res[i][j]=res[i-1][j]+res[i][j-1];
                }
            }
        }
        return res[m-1][n-1];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值