【Python深度学习之路】-3.1性能评价指标

本文介绍了混淆矩阵的概念,它是评估分类模型性能的重要工具,包括真阳性和真阴性等四个类别。同时,讨论了准确率的计算方式,并通过实例展示了如何使用sklearn库计算混淆矩阵。此外,还讲解了F值的含义,它是精确率和召回率的调和平均数,用于综合评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.理解混淆矩阵

所谓混淆矩阵,是指将模型对各个测试数据的预测结果分为真阳性真阴性假阳性假阴性并对符合各个观点的预测结果的数量进行统计的一种表格。
在这里插入图片描述
其中,真阳性和真阴性表示机器学习模型的回答是正确的,假阳性和假阴性则表示机器学习的模型回答是错的。

2.编程实现混淆矩阵

使用sklearn.metrics模块中的confusion_matrix()函数对混淆矩阵中的数据进行观察。
confusion_matrix()函数的使用方法如下

from sklearn.metrics import confusion_matrix
confmat = confusion_matrix(y_true,y_pred)

其中,y_true中保存的是正确答案数据的实际分类的数组,y_pred中保存的是预测结果数组。产生的混淆矩阵的格式如下图所示:
在这里插入图片描述

  • 混淆矩阵练习:
    在这里插入图片描述

3.准确率

所谓准确率,是指在所有的事件中,预测结果与实际情况相符(被分类到TP和TN中)的事件所占的比例。具体的计算公式如下:
在这里插入图片描述
因而3.2中的最后结果准确率为(2+3)/(2+1+0+3)=83.333

4.F值

当数据中存在偏差的话,使用“准确率”这一指标来评估模型是非常危险的,在机器学习中较为广泛使用的是精确率、召回率、F值这些指标来进行性能评估。

  • 精确率表示的是预测为阳性的数据中,实际上属于阳性的数据所占的比例
  • 召回率表示的是属于阳性的数据中心,被预测为阳性的数据所占的比例
  • F值是由精确率和召回率两者组合计算的值(调和平均)

在这里插入图片描述
精确率、召回率、F值都是使用0-1范围内的数值来表示的,越是靠近1的值表示性能越好。

5.编程实现

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vax_Loves_1314

打赏的小盆友都很可耐~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值