使用LLaMA-Factory微调时的数据集选择

在LLaMA-Factory微调过程中,数据集选择直接影响模型性能。本文将介绍默认数据集的分类(指令跟随、RLHF、知识密集、代码文本和通用文本)及其特点(语言、格式、来源和任务)、使用方法(下载、加载、预处理和微调)以及选择策略(任务匹配、语言需求、计算资源和数据质量)。无论您是提升指令理解能力、增强语言表达还是针对特定任务优化,本指南都将帮助您在微调中做出明智决策,获得更符合预期的模型表现。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

LLamaFactory 默认数据集概述

LLamaFactory 提供了丰富的默认数据集,涵盖了自然语言处理(NLP)领域的多种任务。这些数据集

### LLaMA-Factory 文本数据集下载与使用方法 #### 数据集概述 LLaMA-Factory提供了多样的文本数据集,适用于不同的自然语言处理任务。这些数据集不仅覆盖了广泛的领域,还针对特定的任务进行了优化[^1]。 #### 获取数据集 为了获取并加载所需的数据集,在`data/loader.py`文件中的`get_dataset`函数实现了这一功能。此函数负责从指定路径或在线资源中读取数据,并将其转换成统一的标准格式以便后续处理[^3]。 ```python from data.loader import get_dataset dataset_name = 'your_chosen_dataset' # 替换为您想要使用的具体名称 train_set, val_set, test_set = get_dataset(dataset_name) ``` 上述代码展示了如何通过调用`get_dataset`来获得训练集、验证集和测试集的实例。用户只需提供希望使用数据集的名字作为参数传递给该函数即可轻松完成加载操作。 #### 微调模型示例 当选择了合适的数据集之后,可以进一步对其进行微调以适应具体的NLP任务需求。下面是一个基于LoRA技术对Qwen/Qwen2.5-7B-Instruct模型进行文本分类任务微调的例子[^2]: ```python import torch from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name_or_path = "qwen/Qwen2.5-7B-Instruct" num_labels = 2 # 假设这是一个二元分类问题 # 加载预训练模型 model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, num_labels=num_labels) training_args = TrainingArguments( output_dir='./results', evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_set, eval_dataset=val_set ) trainer.train() ``` 这段脚本说明了怎样配置训练环境并对选定的大规模语言模型执行微调过程。注意这里假设了一个简单的二类分类场景;对于其他类型的NLP任务,则需相应调整模型架构和其他超参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值