基于Transformer框架实现微调后Qwen/DeepSeek模型的流式推理并封装成接口

在大语言模型(LLM)应用的实际落地过程中,流式推理(Streaming Inference)是提升用户体验的关键技术。与《基于Transformer框架实现微调后Qwen/DeepSeek模型的非流式批量推理》中使用的传统的批量推理不同,流式推理允许模型在生成过程中实时返回部分结果,从而实现类似于人类对话的交互体验。本文将详细介绍如何基于Transformer框架对微调后的Qwen2和DeepSeek等模型实现异步的实时流式推理,并基于FASTAPI将其封装为高性能API接口,以便在实际应用中快速部署和使用。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

### Qwen_72B Model Details Qwen_72B 是一种大规模预训练语言模型,具有 720 亿参数。该模型基于 Transformer 架构设计,在多个自然语言处理任务上表现出卓越性能[^1]。 #### 主要特点 - **超大参数量**:拥有超过 720 亿个可训练参数。 - **高效行计算**:采用分布式训练技术实现快速收敛。 - **多领域适应能力**:适用于广泛的任务场景,包括但不限于文本生、问答系统等。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen_72B") model = AutoModelForCausalLM.from_pretrained("qwen/Qwen_72B") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### DeepSeek Mixture of Experts (MOE) Project Usage DeepSeek MOE 是一个专注于提高稀疏激活专家网络效率的研究项目。通过引入高效的路由机制和优化策略来减少计算资源消耗的同时保持甚至提升模型表现。 #### 关键组件和技术 - **动态路由算法**:根据不同输入自动选择最合适的子集进行前向传播。 - **自适应门控单元**:控制各层间的信息流强度,增强表达力而不增加复杂度。 - **混合精度量化**:利用低精度数据类型降低内存占用与带宽需求。 ```python import torch from deepseek_moe.modeling import MoEModelConfig, MoEForSequenceClassification config = MoEModelConfig(num_experts=64, d_model=512) moe_model = MoEForSequenceClassification(config) dummy_input_ids = torch.randint(0, 30000, size=(8, 128)) # batch_size=8, seq_len=128 logits = moe_model(dummy_input_ids).logits print(logits.shape) # Expected output shape: [batch_size, num_labels] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值