基于QwenAgent解锁Qwen3无思考高效模式:vLLM部署实战与Ollama模板定制

Qwen3作为国内首个混合推理模型,带来了革命性的双模式思考能力。但在实际应用中,过于详细的思考过程可能会影响响应速度和用户体验。

本文将基于QwenAgent框架,深入探索Qwen3在不同部署方式下的表现,从Ollama到vLLM,从默认思考模式到无思考快速响应,通过实战测试揭示如何充分发挥这一混合推理模型的潜力,最终通过ollama下的自定义模板实现思考过程的精准控制。我们通过以下几种方法进行了系统性测试:

组合配置 描述
Ollama + Qwen2.5 作为基准测试,验证基础功能正常运行
Ollama + Qwen3 发现输出包含大量思考过程,影响响应效率
vLLM + Qwen3 测试专业推理服务的表现和思考控制能力
Ollama + Qwen3 + 提示词优化 通过后缀尝试抑制思考输出
Ollama + Qwen3 + 模板修改 深度定制Ollama模板,彻底解决思考过程问题

主要发现:

  • Qwen3相比Qwen2.5在推理能力上有显著提升,但默认会输出详细的思考过程
  • vLLM提供了更专业的控制选项,但配置相对复杂
  • 通过修改Ollama的chat template,可以在保持推理能力的同时获得简洁的输出
  • 最终通过创建自定义模型qwen3nt(no think)实现了最佳的性能平衡

### Qwen3 模型性能测试评估方法 #### 基准测试 基准测试是一种常见的模型性能评估方式,用于衡量模型在标准化数据集上的表现。对于 Qwen3 模型而言,可以通过多个公开可用的数据集来进行基准测试,例如 MMLU(Multilingual Multiple-Choice Commonsense Reasoning)、GPQA(General Purpose Question Answering)以及 TheoremQA 等[^3]。这些数据集涵盖了多种任务类型,包括但不限于常识推理、数学计算和编程能力。 具体来说,在代码编写方面,可以利用 CodeContest 数据集或者 HumanEval 来验证 Qwen3 是否能够高效生成高质量的程序代码;而在数学领域,则可借助 Math Dataset 进一步考察其解决复杂数学问题的能力。此外,还有可能涉及自然语言处理的经典评测集合 GLUE 和 SuperGLUE,用来检测该版本的语言理解力及其上下文捕捉精度[^4]。 ```python from transformers import pipeline # 初始化Qwen3模型管道 nlp = pipeline('text-generation', model='Qwen/Qwen3') # 使用MMLU数据集进行基准测试 mmlu_results = nlp.evaluate(dataset="mmlu", metric="accuracy") print(f"MMLU Accuracy: {mmlu_results['accuracy']}") ``` #### 压力测试 除了常规条件下的效能测量外,还需要对 Qwen3 实施压力测试以探索它在极端环境里的行为特征。这主要包括两部分内容:一是当输入序列长度显著增长时系统的反应状况如何变化;二是面对大量并行查询请求时的服务质量是否会下降。前者可通过逐步扩展提示词数量至数千甚至上万token级别来实现模拟超长对话场景的效果观察;后者则依赖于专门搭建的压力测试平台完成负载试验分析工作[^5]。 以下是针对吞吐量(throughput),首次响应延迟(first token latency) 及总延时(total latency) 的简单示例脚本: ```bash #!/bin/bash for concurrency_level in $(seq 1 10); do wrk -t$((concurrency_level * 2)) \ -c$concurrency_level \ -d30s http://localhost:8080/generate >> results.txt done ``` 此脚本会逐渐提高并发等级直至达到预定最大值,并记录下每次迭代期间的各项关键指标数值以便后续统计汇总之需。 #### 对比测试 最后一点就是开展跨产品线之间的横向对照研究活动——即把 Qwen3 放置到更广阔的竞争格局之中去审视它的独特之处何在?为此可以选择若干具有代表性的竞品作为参照对象展开细致入微的功能特性剖析过程。比如拿 OpenAI 家族成员 GPT-3 ,阿里巴巴自家兄弟通义千问系列其他变种型号如 Qwen2.5-14B-Instruct ,亦或是来自第三方厂商的作品像 Meta 推出的 Llama 系列等等皆可纳入考量范围之内加以权衡取舍[^2]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值