中间件--ClickHouse-10--海量数据存储如何抉择ClickHouse和ES?

在Mysql数据存储或性能瓶颈时,采用冷热数据分离的方式通常是一种选择。ClickHouse和Elasticsearch(ES)是两个常用的组件,但具体使用哪种组件取决于冷数据的存储目的、查询模式和业务需求等方面。

1、核心对比

(1)、ClickHouse

  • 适用场景:
    • OLAP分析:适合需要快速处理大规模数据的聚合查询(如统计、分析历史数据)。
    • 结构化数据:适合高度结构化的数据(如日志、订单、交易记录等)。
    • 列式存储:列式存储设计使其在聚合查询(如SUM, COUNT, GROUP BY)中性能极佳。
    • 批量写入:适合批量导入冷数据(如定时任务迁移的批量数据)。
  • 优点:
    • 查询性能:在复杂分析场景中显著优于MySQL和ES。
    • 扩展性:支持水平扩展,适合处理PB级数据。
    • 成本:开源免费,硬件成本可控(但需优化配置)。
    • 高效的压缩率,减少存储成本。
  • 缺点:
    • 写入模式:不擅长高频率的小批量写入(适合批量导入冷数据)。
    • 事务支持:不支持传统事务,适合分析型场景。
    • 学习成本:SQL语法和生态相对复杂。
    • 数据更新操作(如删除、修改)效率较低。

(2)、Elasticsearch (ES)

  • 适用场景:
    • 全文搜索:适合需要快速全文检索的场景(如日志、文本内容搜索)。
    • 实时分析:适合半结构化数据(如日志、JSON文档)的实时查询和统计。
    • 高并发写入:支持高吞吐量的写入(如实时日志收集)。
  • 优点:
    • 全文检索:强大的全文搜索和模糊匹配能力。
    • 实时性:数据写入后可立即查询,适合近实时分析。
    • 灵活性:支持动态Schema,适合非结构化或半结构化数据。
    • 扩展性:分布式架构,易于水平扩展。
  • 缺点:
    • 聚合性能:复杂聚合查询(如多维度统计)可能不如ClickHouse高效。
    • 存储成本:存储成本较高(需较多资源存储倒排索引)。
    • 数据模型限制:不适合强事务和复杂关联查询。

2、冷数据存储的典型场景选择

(1)、选择ClickHouse的场景

  • 冷数据用途:
    需要频繁的聚合分析(如统计过去一年的用户行为、订单趋势、日志分析等)。
  • 数据类型:
    结构化数据(如订单表、日志表、交易记录等)。
  • 示例:
    • 将MySQL中超过6个月的订单数据迁移到ClickHouse,用于生成历史销售报告。
    • 将系统日志数据存入ClickHouse,用于分析用户行为趋势。

(2)、选择ES的场景

  • 冷数据用途:
    需要全文搜索或实时日志分析(如日志检索、文本内容分析)。
    • 例如:搜索过去一年中包含特定关键词的日志条目。
  • 数据类型:
    非结构化或半结构化数据(如日志、JSON文档、文本内容等)。
  • 示例:
    • 将MySQL中历史聊天记录迁移到ES,支持用户搜索历史对话中的关键词。
    • 将系统日志存入ES,用于快速定位错误日志。

(3)、混合使用场景

  • 冷数据同时需要分析和搜索:
    可将结构化数据(如订单金额、用户ID)存入ClickHouse,非结构化数据(如订单备注、日志内容)存入ES。
  • 分层存储:
    • 热数据:MySQL(实时事务处理)。
    • 冷数据:
      • ClickHouse(结构化数据(如:具体的数值,金额,年龄等)的分析)。
      • ES(非结构化数据(文档,文本,JSON)的搜索)。

3、冷数据迁移方案设计

(1)、定义冷数据规则:

  • 时间维度:如超过6个月未更新的数据。
  • 访问频率:如过去3个月未被查询的数据。

(2)、数据迁移工具:

  • ClickHouse:使用clickhouse-copier或自定义ETL工具批量导入。
  • ES:使用Logstash或Bulk API批量导入。

(3)、查询逻辑改造:

  • 业务查询时,优先查询MySQL(热数据),若未命中则查询冷数据源(ClickHouse/ES)。

4、具体场景示例

场景:电商平台订单数据

  • 热数据:
    MySQL存储最近3个月的订单数据,用于实时下单、支付等操作。
  • 冷数据:
    • ClickHouse:存储超过3个月的订单数据,用于生成销售报告(如按地区统计GMV)。
    • ES:存储订单备注中的文本内容,支持用户搜索历史订单中的关键词(如“红色T恤”)。

技术选型依据:

  • ClickHouse:
    订单金额、用户ID、时间戳等结构化数据的聚合分析(如SUM(order_amount))。
  • ES:
    订单备注、用户评价等文本内容的全文检索。

5、ClickHouse和ES建议对比

在这里插入图片描述

6、其他替代组件的推荐

(1)、对象存储(如AWS S3、阿里云OSS)

适用场景:

  • 归档类冷数据:长期存储(如1年以上)且极少访问的数据。
  • 低成本存储:通过Parquet、ORC 等列式格式存储,配合Spark/Flink进行批量分析。

优势:

  • 存储成本低,适合冷数据的长期归档。
  • 适合离线分析(如生成月报、年报)。

(2)、HBase或HDFS

适用场景:

  • 半结构化/非结构化数据:如日志、事件日志、需要高扩展性的冷数据。
  • 时序数据:通过时间戳分区存储,支持范围查询。

优势:

  • HBase支持高并发读写,适合部分冷数据仍需少量更新的场景。
  • HDFS适合离线批处理(如 Hadoop 分析)。

(3)、分布式数据库(如TiDB、CockroachDB)

适用场景:

  • 混合冷热数据:需要同时支持 OLTP(热数据)和 OLAP(冷数据)的场景。
  • 强一致性要求:冷数据仍需少量更新或跨库事务。

优势:

  • 自动水平扩展,支持 HTAP(混合事务与分析处理)。

(4)、时序数据库(如 InfluxDB、TimescaleDB)

适用场景:

  • 时间序列数据:如 IoT 设备数据、监控指标、传感器数据。
  • 按时间范围查询:支持自动过期(TTL)和压缩。

优势:

  • 针对时序数据优化,查询效率高,存储成本低。

7、其他组件对比

在这里插入图片描述

8、最佳实践建议

(1)、根据冷数据的用途选择组件

  • 仅需分析(如报表、趋势) → ClickHouse
  • 需要搜索或全文检索(如日志、评论) → ES
  • 长期归档且极少访问 → 对象存储(S3)
  • 时间序列数据(按时间查询) → InfluxDB

(2)、混合架构方案

  • 热数据:保留在 MySQL(或分库分表优化)。
  • 冷数据:
    • 分析需求 → ClickHouse(主) + 对象存储S3(归档)。
    • 搜索需求 → ES(主) + 对象存储S3(归档)。

(3)、数据迁移策略

  • 触发条件:
    • 时间维度(如3个月前)或状态维度(如订单已完结)。
    • 可通过定时任务或触发器迁移。
  • 迁移工具:
    • MySQL → ClickHouse:用INSERT SELECT或工具(如 Maxwell、Debezium)。
    • MySQL → ES:用Logstash、Flink 或自定义ETL。

(4)、成本优化

  • 存储分层:
    • 热数据 → SSD 存储(高性能 MySQL 实例)。
    • 冷数据 → HDD 存储(低成本 ClickHouse 集群或对象存储)。

逆风成长,Dare To Be!!!

<think>嗯,用户之前问过如何处理一亿数据的分表问题,现在接着问分表的查询条件怎么设计。看来用户可能正在设计一个需要处理海量数据的系统,比如电商平台或者社交网络,他们可能遇到了单表查询性能下降的问题,想要通过分表来优化。用户现在关心的是分表之后,如何设计查询条件才能保证查询效率,避免跨表查询带来的性能问题。 首先,我需要回顾分表的基本策略,比如水平分表垂直分表,用户之前已经了解过这些。现在的问题更具体,涉及查询条件的设计。用户可能在使用分表后,发现查询变得复杂,尤其是当查询条件不包含分表键时,需要跨多个表查询,导致性能低下。 接下来,应该考虑分表键的选择对查询条件的影响。比如,如果分表是根据用户ID哈希取模,那么查询时如果带上用户ID,就能直接定位到具体的表,否则可能需要扫描所有表,效率很低。所以,查询条件的设计必须尽量包含分表键,或者结合分表键与其他字段的组合。 用户可能需要知道如何在业务逻辑中强制包含分表键,或者如何设计索引来优化跨表查询。此外,中间件如ShardingSphere如何处理查询条件的路由也是一个关键点。用户可能对如何避免全表扫描、如何设计联合查询、以及如何利用冗余或汇总表来加速查询感兴趣。 另外,用户可能没有明确提到的痛点是分表后的维护扩展问题,比如新增分表后的查询条件是否需要调整,或者历史数据迁移对查询的影响。不过当前问题更侧重于查询条件的设计,所以需要聚焦在如何设计条件才能高效查询。 还需要考虑不同分表策略下查询条件的设计差异,比如范围分表(如按时间)哈希分表的区别。例如,时间范围分表下,按时间查询可以快速定位到具体的表,而哈希分表则需要明确的分表键。 最后,可能需要举一些实际例子,比如电商订单系统如何根据订单ID用户ID设计查询条件,或者日志系统如何按时间分表后优化按时间范围的查询。这些例子可以帮助用户更好地理解理论在实际中的应用。</think>在设计分表后的查询条件时,核心目标是 **减少跨表查询、高效路由到目标表**,同时避免全表扫描。以下是关键设计原则具体实现方法,结合场景示例说明: -- ### **一、查询条件设计原则** | **原则** | **说明** | **违反后果** | |--|-------------------------------------------------------------------------|---------------------------------| | **必须包含分表键** | 查询条件中必须明确分表键(如 `user_id`、`order_id`),否则需要扫描所有表 | 跨表查询导致性能骤降(如全表扫描1024张表) | | **避免非分表键查询** | 若无法避免(如根据非分表字段搜索),需额外设计冗余或辅助索引表 | 查询复杂度上升,响应时间不可控 | | **分页排序优化** | 排序字段尽量与分表键关联(如按时间分表后按时间排序) | 跨表排序需内存聚合,性能差 | | **避免复杂联合查询** | 跨表JOIN需谨慎设计,优先通过业务拆分或数据冗余实现 | 分布式事务难以控制,查询延迟高 | -- ### **二、分表键与查询条件的绑定策略** #### **1. 强制绑定分表键(最佳实践)** - **场景**:用户订单表按 `user_id` 分表(1024张表)。 - **查询条件设计**: ```sql -- 正确:条件中包含分表键 user_id SELECT * FROM order_527 WHERE user_id = 12345 AND create_time > '2023-01'; -- 错误:缺少分表键,需扫描所有表 SELECT * FROM order_* WHERE product_id = 67890; ``` - **解决方案**: 业务层强制要求查询时必须传入 `user_id`,或通过中间件自动路由(如根据 `product_id` 反查 `user_id`)。 #### **2. 分表键与其他字段的联合查询** - **场景**:日志表按 `日期(YYYYMMDD)` 分表,需按 `日期+用户ID` 查询。 - **优化方法**: 建立 **联合索引** `(date, user_id)`,确保查询命中分表键索引: ```sql -- 直接定位到表 log_20231001,且使用索引 SELECT * FROM log_20231001 WHERE date = '2023-10-01' AND user_id = 'abc'; ``` --- ### **三、无法避免跨表查询的解决方案** #### **1. 建立全局索引表(空间换时间)** - **场景**:商品表按 `category_id` 分表,需根据 `product_name` 模糊查询。 - **实现方式**: - 创建辅助表 `product_name_index`,存储 `product_name` 对应的 `category_id`。 - 查询时先查索引表,再根据 `category_id` 定位分表: ```sql -- 步骤1:查索引表(可缓存或分库) SELECT category_id FROM product_name_index WHERE product_name LIKE '%手机%'; -- 步骤2:根据 category_id 查询具体分表 SELECT * FROM product_3 WHERE category_id = 3 AND product_name LIKE '%手机%'; ``` #### **2. 异步聚合查询** - **场景**:统计全平台订单总金额(订单表按 `user_id` 分1024张表)。 - **实现方式**: - 并行查询所有分表,内存聚合结果: ```java // 伪代码:并发查询所有分表 List<Future<BigDecimal>> futures = new ArrayList<>(); for (int i = 0; i < 1024; i++) { futures.add(executor.submit(() -> { return queryTotalAmount("order_" + i); })); } // 聚合结果 BigDecimal total = futures.stream().map(Future::get).reduce(BigDecimal.ZERO, BigDecimal::add); ``` - **代价**:资源消耗大,适合低频操作。 --- ### **四、分表后查询的常见陷阱与规避** #### **1. 分页查询优化** - **问题**:跨表分页(如 `ORDER BY time DESC LIMIT 10, 10`)需全表扫描后聚合。 - **解决方案**: - **业务限制**:仅允许按分表键范围分页(如时间范围)。 - **游标分页**:使用 `last_id` 代替 `OFFSET`: ```sql -- 按时间分表,查询下一页 SELECT * FROM order_202310 WHERE create_time < '2023-10-10 12:00:00' ORDER BY create_time DESC LIMIT 10; ``` #### **2. 模糊查询(LIKE)处理** - **问题**:`LIKE '%keyword%'` 无法走索引,跨表时性能极差。 - **方案**: - **冗余存储**:增加 `search_keyword` 字段并建立倒排索引。 - **使用搜索引擎**:同步数据到Elasticsearch,由ES处理复杂搜索。 -- ### **五、中间件对查询条件的路由优化** 以 **ShardingSphere** 为例,通过解析SQL自动路由: ```yaml # 分片规则配置示例(按 user_id 分表) rules: - !SHARDING tables: order: actualDataNodes: ds_0.order_${0..1023} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: mod_hash shardingAlgorithms: mod_hash: type: MOD props: sharding-count: 1024 ``` - **查询优化**: - 若SQL包含 `user_id`,直接路由到对应分表。 - 若不包含,默认广播到所有表(可通过 `hint` 强制指定分片)。 -- ### **六、实际场景参考** #### **场景:电商订单系统** - **分表规则**:按 `order_id`(雪花算法)哈希分1024表。 - **查询设计**: 1. **用户查订单列表**:必须带 `user_id`(通过用户ID查订单)。 2. **后台按订单号查询**:直接解析 `order_id` 中的分表位(如后10位取模)。 3. **运营统计**:走独立OLAP库(如ClickHouse),避免影响线上交易库。 --- ### **总结** 分表后的查询条件设计需遵循 **“分表键优先”** 原则,结合业务需求选择以下策略: - **强绑定分表键**:确保查询直接命中单表。 - **冗余索引表**:应对非分表键查询。 - **中间件路由**:自动解析分片规则。 - **异步聚合**:处理统计类低频操作。 最终目标:**让90%以上的高频查询命中单表,剩余复杂查询通过架构补偿**。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值