大模型的实践应用30-大模型训练和推理中分布式核心技术的应用

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用30-大模型训练和推理中分布式核心技术的应用。本文深入探讨了大模型训练和推理中分布式核心技术的应用。首先介绍了项目背景,阐述了大模型发展对高效技术的需求。接着详细讲解了分布式技术的原理,包括数据并行、模型并行等。通过实际应用实例代码,展示了分布式技术在大模型训练和推理中的具体实现。最后展望了未来发展趋势,如更高的性能、更好的兼容性等。总之,本文为理解和应用大模型训练和推理中的分布式技术提供了全面的参考。
在这里插入图片描述

文章目录

一、项目背景介绍

1.1 大模型发展现状:“百模大战”与高昂成本

在人工智能领域,近年来“大模型”(large language models, LLMs)已成为研究与应用的焦点,标志着AI技术进入了一个全新的发展阶段。以GPT系列、BERT、Turing-NLG等为代表的大型语言模型,在自然语言处理、文本生成、机器翻译等任务上展现了前所未有的能力,推动了所谓的“百模大战”。这场竞赛不仅限于学术界,科技巨头如Google、Microsoft、阿里云等也纷纷加入,不断刷新模型参数量的纪录,力求在人工智能的军备竞赛中占据领先地位。

然而,随着模型规模的急剧膨胀,其训练和部署的成本亦随之飙升。大模型的训练往往需要数千甚至数万颗GPU协同工作数周乃至数月,电力消耗巨大,单次训练成本可达数百万美元。部署时,由于模型体积庞大,对计算资源和内存的需求极

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值