DeepSeek V3 训练策略:FP8混合精度与多Token预测

近年来,大规模语言模型取得重大突破,但其训练与部署成本也随之攀升。DeepSeek 系列开源模型致力于通过优化模型结构和训练策略来降低成本、提升性能。DeepSeek V3 融合了多种先进技术(如 FP8 低精度训练、DualPipe 双流水线机制、多Token 预测目标等),在保证模型能力的同时大幅提高了效率。本文将分五部分详细介绍 DeepSeek V3 在高效训练框架、双流水线并行、多Token 预测、多项部署优化策略及效果与影响方面的技术实现与创新。

高效训练框架

在 DeepSeek V3 中,训练框架经过全面优化,以实现高速收敛和低资源占用。首先,我们引入了FP8 混合精度训练机制:也就是说,绝大多数计算(如前向推理中的线性变换、反向传播中的梯度计算)和参数存储均采用 8 位浮点格式,从而显著降低显存占用并加速计算。相比传统的 BF16/FP16,FP8 只需一半的位宽,这意味着相同张量的存储量降为 1/4,同时在硬件上执行核心矩阵运算时吞吐接近翻倍。为了应对 FP8 精度较低带来的数值挑战,DeepSeek V3 实施了细粒度量化策略:将权重和激活值按块(Tile/Block)分组,每组使用独立的量化缩放系数,尽量减少极值导致的溢出或下溢。计算时采用高精度累加(如 BF16/FP32 做累加)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值