lintcode练习- 111. 爬楼梯

111. 爬楼梯

假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?

样例

比如n=3,1+1+1=1+2=2+1=3,共有3种不同的方法

返回 3

解题思路:

很经典的动态规划问题,第一阶只有1, 第二阶有1+1, 2两种,第三阶就有 1,1,1; 1,2;2,1三种,

第四阶有2+3 =5种,依次类推,可以找出彼此之间的关系为 dp[i] = dp[i-1] + dp[i-2]。这个也是斐波那契数列数列的求解公式,所以也可以用斐波那契的经典求解方式。

还有一种是利用矩阵乘法的方式,可以达到0(logN)的时间复杂度,原理:https://blog.csdn.net/qq_36387683/article/details/81939513

class Solution:
    """
    @param n: An integer
    @return: An integer
    """
    '''
    #动态规划
    def climbStairs(self, n):
        # write your code here
        if n < 3:
            return n
        dp = [0] * (n+1)
        dp[1] = 1
        dp[2] = 2
        for i in range(3, n+1):
            dp[i] = dp[i-1] + dp[i-2]
        
        return dp[n]
    '''
    
    '''
    斐波那契式求解
    def climbStairs(self, n):
        # write your code here
        if n < 3:
            return n
        
        before1 = 1
        before2 = 2
        res = 0
        for i in range(n-2):
            res = before1 + before2
            before1 = before2
            before2 = res
        
        return res
    '''
    
    #时间复杂度O(logN), 利用矩阵求解
    def climbStairs(self, n):
        # write your code here
        if n < 3:
            return n
        
        base = [[1, 1], [1, 0]]
        res = self.matrixPower(base, n-2)
        return 2*res[0][0] + res[1][0]
    
    
    def matrixPower(self, m, p):
        res = [[0] * len(i) for i in m]
        for i in range(len(res)):
            res[i][i] = 1
        tmp = m
        while p!= 0:
            if p&1 != 0:
                res = self.muliMatrix(res, tmp)
            
            tmp = self.muliMatrix(tmp, tmp)
            p = p>>1
        return res
        
    
    def muliMatrix(self, m1, m2):
        res = [[0] * len(m2[0]) for _ in m1]
        for i in range(len(m1)):
            for j in range(len(m2[0])):
                for k in range(len(m2)):
                    res[i][j] += m1[i][k] * m2[k][j]
        
        return res
    

 

LintCode 1817 - 分享巧克力 是一道经典的算法题目,通常涉及动态规划、贪心算法等知识。这道题的核心思想是如何将一块巧克力分成若干块,并让每块满足一定的条件。 ### 题目概述: 假设有一块 `m x n` 的巧克力网格图,每个格子表示一小块巧克力。你需要将其分给 K 个人,每个人获得连续的一段巧克力(可以横着切或竖着切)。目标是使得所有人的巧克力总和的最大值尽可能小。 --- ### 解法思路: #### 方法一:二分查找 + 模拟验证 我们可以采用“二分查找”的策略来解决这个问题。核心在于设定一个范围 `[min_val, sum_of_chocolate]`,其中 `min_val` 表示单个巧克力单元的最小值,而 `sum_of_chocolate` 则是整个巧克力表的所有数值之和。 骤如下: 1. **确定搜索区间**:左边界设为数组中的最大元素 (因为至少一人要拿到这个数),右边界设为总和 (即所有人都拿一样的情况)。 2. **验证中间值是否可行**:对于当前猜测的最大值 mid,检查能否通过合理的切割分配方案,使得每个人的份额都不超过该值。 3. 根据结果调整左右边界直至找到最优解。 时间复杂度大约为 O(log(total_sum) * m * n) #### 示例代码片段(Python版): ```python def minimizeMaxShare(chocoGrid, k): def canSplit(max_allowed): # 实现判断是否能按照规则分割函数 total = sum(map(sum,chocogrid)) low , high= max([max(row) for row in chocogrid]),total while(low<high): mid=(low+high)//2 if(canSplit(mid)): high=mid else: low=mid+1 return low ``` --- ### 关键点总结: - 使用了高效的二分查找技巧降低暴力枚举的时间开销; - 结合实际场景构建辅助判定功能完成对潜在解答的有效评估;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值