Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... error error: subprocess-exited-with-error × pip subprocess to install backend dependencies did not run successfully.

时间: 2025-05-28 10:38:30 浏览: 81
### 解决 `pip install` 后端依赖时出现的 `subprocess-exited-with-error` 错误 当使用 `pip install` 安装后端依赖时遇到 `error: subprocess-exited-with-error`,该问题通常由以下几种原因引起: #### 1. **Setuptools 版本不兼容** 这一问题是由于 `setuptools` 的版本过高或过低导致的。可以通过调整其版本来解决此问题。具体操作如下: ```bash pip install --upgrade setuptools ``` 或者降级至适合的版本: ```bash pip install setuptools==65.5.0 # 可根据实际情况选择合适的版本号[^1] ``` #### 2. **Python 版本与依赖项不匹配** 部分依赖库仅支持特定版本的 Python。因此,建议确认当前使用的 Python 版本是否满足依赖项的要求。可通过以下命令检查 Python 版本: ```bash python --version ``` 若版本不符,则需升级或切换到适配的 Python 版本。 #### 3. **缺失必要的编译工具或依赖库** 某些后端依赖可能需要额外的系统级依赖才能正常安装。例如,在 Linux 上安装 C 扩展模块时,可能需要 GCC 编译器及相关开发头文件。解决方案包括: - 在 Ubuntu/Debian 系统中: ```bash sudo apt-get update && sudo apt-get install build-essential libssl-dev libffi-dev python3-dev ``` - 在 macOS 中: ```bash brew install openssl export LDFLAGS="-L/usr/local/opt/openssl/lib" export CPPFLAGS="-I/usr/local/opt/openssl/include" ``` - 在 Windows 中,可尝试下载预编译二进制文件并手动安装[^3]。 #### 4. **包名拼写错误** 如果目标依赖的实际名称与其缩写形式不同,也可能引发此类错误。例如,`dotenv` 并不存在于 PyPI 中,实际应安装的是 `python-dotenv`[^4]。务必仔细核对官方文档中的包名。 #### 5. **网络连接不稳定** 不稳定的网络可能导致部分资源未能成功下载,从而触发异常退出行为。推荐设置代理或离线模式重试: ```bash pip install --proxy=http://your-proxy-url backend-dependencies ``` 或提前获取所需 whl 文件后再执行本地安装: ```bash pip install /path/to/backend_dependencies.whl ``` 以下是综合处理流程的一个示例脚本: ```python import os os.system('pip install --upgrade setuptools') os.system('pip install wheel') # 确保wheel已安装以便构建更复杂的扩展 os.system('pip install backend-dependencies') ``` --- ###
阅读全文

相关推荐

(xinference) PS C:\Windows\system32> pip install llama-cpp-python Collecting llama-cpp-python Using cached llama_cpp_python-0.3.7.tar.gz (66.7 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... done Preparing metadata (pyproject.toml) ... done Collecting typing-extensions>=4.5.0 (from llama-cpp-python) Using cached typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB) Collecting numpy>=1.20.0 (from llama-cpp-python) Using cached numpy-2.2.3-cp311-cp311-win_amd64.whl.metadata (60 kB) Collecting diskcache>=5.6.1 (from llama-cpp-python) Using cached diskcache-5.6.3-py3-none-any.whl.metadata (20 kB) Collecting jinja2>=2.11.3 (from llama-cpp-python) Using cached jinja2-3.1.5-py3-none-any.whl.metadata (2.6 kB) Collecting MarkupSafe>=2.0 (from jinja2>=2.11.3->llama-cpp-python) Using cached MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl.metadata (4.1 kB) Using cached diskcache-5.6.3-py3-none-any.whl (45 kB) Using cached jinja2-3.1.5-py3-none-any.whl (134 kB) Using cached numpy-2.2.3-cp311-cp311-win_amd64.whl (12.9 MB) Using cached typing_extensions-4.12.2-py3-none-any.whl (37 kB) Using cached MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl (15 kB) Building wheels for collected packages: llama-cpp-python Building wheel for llama-cpp-python (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for llama-cpp-python (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [306 lines of output] *** scikit-build-core 0.11.0 using CMake 3.31.6 (wheel) *** Configuring CMake... 2025-03-04 00:24:37,103 - scikit_build_core - WARNING - Can't find a Python library, got libdir=None, ldlibrary=None, multiarch=None, masd=None loading initial cache file C:\Users\admin\AppData\Local\Temp\tmphkbm01o4\build\CMakeInit.txt -- Building for: Visual Studio 17 2022 -- Selecting Windows SDK version 10.0.22621.0 to target Windows 10.0.1

D:\>pip install TA-Lib -i https://pypi.tuna.tsinghua.edu.cn/simple Defaulting to user installation because normal site-packages is not writeable Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting TA-Lib Downloading https://pypi.tuna.tsinghua.edu.cn/packages/35/dc/e7fab66315fdd2e2eeb2e3dbb9d23ea615bafc1e9174a8965d310e40a 3c2/ta_lib-0.6.3.tar.gz (376 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... done Preparing metadata (pyproject.toml) ... done Collecting setuptools (from TA-Lib) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/37/66/d2d7e6ad554f3a7c7297c3f8ef6e22643ad3d35ef5c63bf488bc89f3 2f31/setuptools-76.0.0-py3-none-any.whl (1.2 MB) Collecting numpy (from TA-Lib) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/97/e7/7d55a86719d0de7a6a597949f3febefb1009435b79ba510ff32f05a8 c1d7/numpy-2.2.3-cp313-cp313-win_amd64.whl (12.6 MB) Building wheels for collected packages: TA-Lib Building wheel for TA-Lib (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for TA-Lib (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [32 lines of output] <string>:83: UserWarning: Cannot find ta-lib library, installation may fail. C:\Users\Administrator\AppData\Local\Temp\pip-build-env-w570iw2q\overlay\Lib\site-packages\setuptools\config\_appl y_pyprojecttoml.py:81: SetuptoolsWarning: install_requires overwritten in pyproject.toml (dependencies) corresp(dist, value, root_dir) running bdist_wheel running build running build_py creating build\lib.win-amd64-cpython-313\talib copying talib\abstract.py -> build\lib.win-amd64-cpython-313\talib copying talib\deprecated.py -> build\lib.win-amd64-cpython-313\talib copying talib\stream.py -> build\lib.win-amd64-cpython-313\talib copying talib\__init__.py -> build\lib.win-amd64-cpython-313\talib runn

PS D:\vscode\ipy> pip install gensim Collecting gensim Using cached gensim-4.3.3.tar.gz (23.3 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Collecting numpy<2.0,>=1.18.5 (from gensim) Using cached numpy-1.26.4.tar.gz (15.8 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... done Preparing metadata (pyproject.toml) ... error error: subprocess-exited-with-error × Preparing metadata (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [21 lines of output] + D:\python\python.exe C:\Users\wsz\AppData\Local\Temp\pip-install-dtrma9xs\numpy_efd5b3716d704b0882d2705df13d6c0e\vendored-meson\meson\meson.py setup C:\Users\wsz\AppData\Local\Temp\pip-install-dtrma9xs\numpy_efd5b3716d704b0882d2705df13d6c0e C:\Users\wsz\AppData\Local\Temp\pip-install-dtrma9xs\numpy_efd5b3716d704b0882d2705df13d6c0e\.mesonpy-zlvdswu1 -Dbuildtype=release -Db_ndebug=if-release -Db_vscrt=md --native-file=C:\Users\wsz\AppData\Local\Temp\pip-install-dtrma9xs\numpy_efd5b3716d704b0882d2705df13d6c0e\.mesonpy-zlvdswu1\meson-python-native-file.ini The Meson build system Version: 1.2.99 Source dir: C:\Users\wsz\AppData\Local\Temp\pip-install-dtrma9xs\numpy_efd5b3716d704b0882d2705df13d6c0e Build dir: C:\Users\wsz\AppData\Local\Temp\pip-install-dtrma9xs\numpy_efd5b3716d704b0882d2705df13d6c0e\.mesonpy-zlvdswu1 Build type: native build Project name: NumPy Project version: 1.26.4 WARNING: Failed to activate VS environment: Could not parse vswhere.exe output ..\meson.build:1:0: ERROR: Unknown compiler(s): [['icl'], ['cl'], ['cc'], ['gcc'], ['clang'], ['clang-cl'], ['pgcc']] The following exception(s) were encountered: Running icl "" gave "[WinError 2] 系统找不到指定的文件。" Running cl /? gave "[WinError 2] 系统找不到指定的文件。" Running cc --version gave "[

pip install --upgrade pyldavis gensimRequirement already satisfied: pyldavis in c:\users\administrator\desktop\123\lib\site-packages (3.2.2) Collecting pyldavis Using cached pyLDAvis-3.3.1.tar.gz (1.7 MB) Installing build dependencies: started Installing build dependencies: finished with status 'done' Getting requirements to build wheel: started Getting requirements to build wheel: finished with status 'done' Installing backend dependencies: started Installing backend dependencies: finished with status 'done' Preparing metadata (pyproject.toml): started Preparing metadata (pyproject.toml): finished with status 'done' Requirement already satisfied: gensim in c:\users\administrator\desktop\123\lib\site-packages (4.2.0) Requirement already satisfied: numpy>=1.20.0 in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (1.21.6) Requirement already satisfied: scipy in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (1.3.1) Requirement already satisfied: pandas>=1.2.0 in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (1.3.5) Requirement already satisfied: joblib in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (0.13.2) Requirement already satisfied: jinja2 in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (2.10.3) Requirement already satisfied: numexpr in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (2.7.0) Requirement already satisfied: future in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (0.17.1) Requirement already satisfied: funcy in c:\users\administrator\desktop\123\lib\site-packages (from pyldavis) (2.0) Collecting sklearn (from pyldavis) Using cached sklearn-0.0.post12.tar.gz (2.6 kB) Preparing metadata (setup.py): started Preparing metadata (setup.py): finished with status 'error' Note: you may need to restart the kernel to use updated packages. error: subprocess-exited-with-error

C:\Users\归结为>pip install mamba-ssm Defaulting to user installation because normal site-packages is not writeable Looking in indexes: https://mirrors.aliyun.com/pypi/simple/ Collecting mamba-ssm Using cached https://mirrors.aliyun.com/pypi/packages/1d/c7/6e21ecece28e6d625f42e708c7523cd78ec82d1622f98562f82bf02748b7/mamba_ssm-2.2.4.tar.gz (91 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [26 lines of output] C:\Users\归结为\AppData\Local\Temp\pip-build-env-5ffeek4q\overlay\Lib\site-packages\torch\_subclasses\functional_tensor.py:276: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) <string>:118: UserWarning: mamba_ssm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc. torch.__version__ = 2.7.0+cpu Traceback (most recent call last): File "D:\BandzipMSE\Miniconda3\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module> main() File "D:\BandzipMSE\Miniconda3\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\BandzipMSE\Miniconda3\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-5ffeek4q\overlay\Lib\site-packages\setuptools\build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-5ffeek4q\overlay\Lib\site-packages\setuptools\build_meta.py", line 301, in _get_build_requires self.run_setup() File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-5ffeek4q\overlay\Lib\site-packages\setuptools\build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 188, in <module> NameError: name 'bare_metal_version' is not defined [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. C:\Users\归结为>git clone https://github.com/state-spaces/mamba.git Cloning into 'mamba'... remote: Enumerating objects: 726, done. remote: Counting objects: 100% (48/48), done. remote: Compressing objects: 100% (27/27), done. remote: Total 726 (delta 34), reused 21 (delta 21), pack-reused 678 (from 3) Receiving objects: 100% (726/726), 1.58 MiB | 1.47 MiB/s, done. Resolving deltas: 100% (389/389), done. C:\Users\归结为>cd mamba C:\Users\归结为\mamba>pip install -e . Defaulting to user installation because normal site-packages is not writeable Looking in indexes: https://mirrors.aliyun.com/pypi/simple/ Obtaining file:///C:/Users/%E5%BD%92%E7%BB%93%E4%B8%BA/mamba Installing build dependencies ... done Checking if build backend supports build_editable ... done Getting requirements to build editable ... error error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> [29 lines of output] C:\Users\归结为\AppData\Local\Temp\pip-build-env-r9v8v3eg\overlay\Lib\site-packages\torch\_subclasses\functional_tensor.py:276: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) <string>:118: UserWarning: mamba_ssm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc. torch.__version__ = 2.7.0+cpu Traceback (most recent call last): File "D:\BandzipMSE\Miniconda3\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module> main() File "D:\BandzipMSE\Miniconda3\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\BandzipMSE\Miniconda3\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 132, in get_requires_for_build_editable return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-r9v8v3eg\overlay\Lib\site-packages\setuptools\build_meta.py", line 473, in get_requires_for_build_editable return self.get_requires_for_build_wheel(config_settings) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-r9v8v3eg\overlay\Lib\site-packages\setuptools\build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-r9v8v3eg\overlay\Lib\site-packages\setuptools\build_meta.py", line 301, in _get_build_requires self.run_setup() File "C:\Users\归结为\AppData\Local\Temp\pip-build-env-r9v8v3eg\overlay\Lib\site-packages\setuptools\build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 188, in <module> NameError: name 'bare_metal_version' is not defined [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. C:\Users\归结为\mamba>

pip install ninja Collecting ninja Using cached ninja-1.11.1.3.tar.gz (129 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... done Preparing metadata (pyproject.toml) ... done Building wheels for collected packages: ninja Building wheel for ninja (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for ninja (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [29 lines of output] C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\normal\lib\python3.11\site-packages\setuptools_scm\git.py:312: UserWarning: git archive did not support describe output warnings.warn("git archive did not support describe output") C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\normal\lib\python3.11\site-packages\setuptools_scm\git.py:331: UserWarning: unprocessed git archival found (no export subst applied) warnings.warn("unprocessed git archival found (no export subst applied)") *** scikit-build-core 0.11.0 using CMake 3.20.2 (wheel) *** Configuring CMake... Traceback (most recent call last): File "E:\software\Msys2\ucrt64\lib\python3.11\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "E:\software\Msys2\ucrt64\lib\python3.11\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\software\Msys2\ucrt64\lib\python3.11\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 280, in build_wheel return _build_backend().build_wheel( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\overlay\lib\python3.11\site-packages\scikit_build_core\build\__init__.py", line 33, in build_wheel return _build_wheel_impl( ^^^^^^^^^^^^^^^^^^ File "C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\overlay\lib\python3.11\site-packages\scikit_build_core\build\wheel.py", line 174, in _build_wheel_impl return _build_wheel_impl_impl( ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\overlay\lib\python3.11\site-packages\scikit_build_core\build\wheel.py", line 421, in _build_wheel_impl_impl builder.configure( File "C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\overlay\lib\python3.11\site-packages\scikit_build_core\builder\builder.py", line 191, in configure local_def = set_environment_for_gen( ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\admin\AppData\Local\Temp\pip-build-env-ua39tw68\overlay\lib\python3.11\site-packages\scikit_build_core\builder\generator.py", line 135, in set_environment_for_gen raise NinjaNotFoundError(msg) scikit_build_core.errors.NinjaNotFoundError: Ninja or make is required to build [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for ninja Failed to build ninja ERROR: Failed to build installable wheels for some pyproject.toml based projects (ninja)

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Obtaining file:///D:/MYGIt/4DGaussians/submodules/depth-diff-gaussian-rasterization Installing build dependencies ... done Checking if build backend supports build_editable ... done Getting requirements to build editable ... error error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> [23 lines of output] Traceback (most recent call last): File "D:\MYGIt\4DGaussians\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "D:\MYGIt\4DGaussians\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MYGIt\4DGaussians\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 157, in get_requires_for_build_editable return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\10237\AppData\Local\Temp\pip-build-env-k3sn8ja0\overlay\Lib\site-packages\setuptools\build_meta.py", line 473, in get_requires_for_build_editable return self.get_requires_for_build_wheel(config_settings) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\10237\AppData\Local\Temp\pip-build-env-k3sn8ja0\overlay\Lib\site-packages\setuptools\build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\10237\AppData\Local\Temp\pip-build-env-k3sn8ja0\overlay\Lib\site-packages\setuptools\build_meta.py", line 301, in _get_build_requires self.run_setup() File "C:\Users\10237\AppData\Local\Temp\pip-build-env-k3sn8ja0\overlay\Lib\site-packages\setuptools\build_meta.py", line 512, in run_setup super().run_setup(setup_script=setup_script) File "C:\Users\10237\AppData\Local\Temp\pip-build-env-k3sn8ja0\overlay\Lib\site-packages\setuptools\build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 13, in <module> ModuleNotFoundError: No module named 'torch' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build editable did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip.

大家在看

recommend-type

谐响应分析步骤-ANSYS谐响应分析

谐响应分析 第三节:步骤 四个主要步骤: 建模 选择分析类型和选项 施加谐波载荷并求解 观看结果
recommend-type

CENTUM TP 安装授权及windows设置.rar

CENTUM VP系统软件的安装,以及安装前的必要工作。 CENTUM VP 系统软件的构成: CENTUM VP software(系统组态、操作监视功能、其他可选软件包)控制总线驱 动电子文档。 CENTUM VP 系统软件的安装步骤 安装Windows。(如果PC已经安装可以不做) 启动 Windows 对Windows 进行必要设置以便CENTUM VP的运行: 添加网络适配器 安装Ethernet 适配器(已经存在不必安装)。 安装控制总线驱动(已经存在不必安装)。 添加打印机 安装Service Pack。 安装USB操作键盘驱动 使用USB接口操作键盘时安装 安装CENTUM VP 软件。 Windows构成指定。(包括运行CENTUM VP必须的网络、用户名、其他必要信息 等的设置)。 在CENTUM VP的功能已经具备,如果仅仅是用于工程组态,不需要制定“CENTUM” 用户“自动登录HIS”。 以管理员身份对以下内容进行必要设置。 l 计算机名(站名) 计算机名是Windows 网络用于识别每一台计算机的标志。 一个站名是CENTUM VP 系统中,根据控制总线地址确定的唯一名称。 应确保计算机名和站名的一致性。 计算机名(站名)的设定例: HIS0164 (HISddss:“dd”域号;“ss”站号。) l IP 地址 IP 地址是Vnet 或Vnet Open。用于识别每台PC的确定地址。在各网络中每台PC 的地址是唯一的。 例:172.16.1.64(Vnet);192.168.129.193(Vnet Open) Vnet 地址:172.16.dd.ss “dd”域号:01~16 “ss”站号:01~64 Vnet Open 地址:192.168.128+ dd.129+ ss 子网掩码 255.255.0.0 设置Administrator 密码 为PC机管理者设定密码。 l CENTUM VP 帐户和密码 操作监视功能帐户:CENTUM(系统固定)。 该帐户是在系统安装时自动生成的,账户名不能更改。
recommend-type

文档编码批量转换UTF16toUTF8.rar

将UTF16编码格式的文件转换编码到UTF8 使用格式:U16toU8.exe [output] 如果没有output,则覆盖源文件,否则输出到output中 方便命令行使用,批量转换文件编码
recommend-type

Matlab实现与C代码实现S曲线加减速(完整源码).zip

计算机类毕业设计、课程作业,系统源码!!!
recommend-type

欧姆龙CP1H与modbus通信视频

详细介绍欧姆龙CP1H与Modbus通信的视频!!!!!!!!!!!

最新推荐

recommend-type

ASR生产工具_MiFi Tool & Drivers.7z

当前所发布的全部内容源于互联网搬运整理收集,仅限于小范围内传播学习和文献参考,仅供日常使用,不得用于任何商业用途,请在下载后24小时内删除,因下载本资源造成的损失,全部由使用者本人承担!如果有侵权之处请第一时间联系我们删除。敬请谅解!
recommend-type

基于C#和C++实现的幼儿园信息管理系统+源码+项目文档(毕业设计&课程设计&项目开发)

基于C#和C++实现的幼儿园信息管理系统+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用 学生基本信息: 姓名,年龄,身高,体重,性别,入学日期,家长信息(父母姓名,电话,地址),保险,体检资料,学生疾病记录,班级,电话,每个学生需要特别注意的问题(这个保留一个字段) 收费标准:年级作为区分点,收费包含的内容(这个需要交流详细确认,可以添加收费项,删除收费项),班级支出计划,收费计划,查询学生缴费情况,收支登记及查询,可以导出和导入excel表格 基本功能:能导入学生信息表,能导出学生信息表,查询学生基本信息,家长信息,家庭情况,接送路线,学生升学(升学前及升学去向),转班记录(转班前和转班去向)查询 系统管理功能:普通用户,管理员。普通用户可以查询学生信息,添加学生信息,不能查看收费标准这一栏。管理员可以增删改查所有的操作。管理员可以添加普通用户。
recommend-type

SP970 V13 新原版BOOT.zip

当前所发布的全部内容源于互联网搬运整理收集,仅限于小范围内传播学习和文献参考,仅供日常使用,不得用于任何商业用途,请在下载后24小时内删除,因下载本资源造成的损失,全部由使用者本人承担!如果有侵权之处请第一时间联系我们删除。敬请谅解!
recommend-type

Python测试题.docx

Python测试题.docx
recommend-type

082-java精品项目-基于ssm的宠物医院商城系统.zip

java源代码+数据库+配套文档+答辩教程
recommend-type

JTA、Hibernate与Spring集成实战详解

标题所提到的知识点为Java事务API(JTA)、Hibernate以及Spring框架的集成。这一主题涉及到企业级应用开发中的事务管理、对象关系映射(ORM)和依赖注入/控制反转(DI/IOC)。 JTA(Java Transaction API)是Java EE的一部分,它提供了一组接口来定义和控制分布式事务。事务是一种将多个操作视为一个整体的方法,要么全部完成,要么完全不做。JTA允许Java应用程序使用Java事务服务来管理事务,特别适用于需要保证数据一致性的场合。 Hibernate是一个开源的ORM框架,它将Java对象映射到关系型数据库中,并提供了一个框架来进行数据持久化操作。使用Hibernate,开发者可以不必直接编写SQL代码,而是通过操作对象的方式来进行数据库的增删改查操作。 Spring是一个全面的开源应用程序框架,其核心思想是控制反转(IoC)和面向切面编程(AOP)。Spring框架通过依赖注入(DI)机制帮助开发者管理对象之间的依赖关系,并且Spring还提供了声明式事务管理等功能。 在标题“jta hibernate spring 集成 代码和说明”中,需要关注的是如何将这三个组件集成在一起,以实现一个企业级应用中的事务管理和数据持久化。这里关键在于理解如何在Spring环境中配置和使用JTA来管理Hibernate的事务。 在JTA、Hibernate和Spring的集成中,通常需要以下几个步骤: 1. 配置数据源:在Spring的配置文件中配置JDBC数据源以及JTA事务管理器。 2. 配置Hibernate会话工厂:通过Hibernate的配置文件或程序代码配置Hibernate,指定实体类的映射关系和数据库表的对应关系。 3. 配置Spring管理的Hibernate模板:利用Spring的`LocalSessionFactoryBean`来创建Hibernate的会话工厂,并通过`HibernateTemplate`或`HibernateDaoSupport`来简化数据访问层的代码。 4. 集成JTA事务管理:使用Spring的事务抽象层(`PlatformTransactionManager`),在需要事务管理的方法上加上`@Transactional`注解或配置事务管理属性。 具体的代码实现可能包括: ```java // Spring配置文件 <bean id="dataSource" class="..." ... /> <bean id="transactionManager" class="..." ... /> <bean id="sessionFactory" class="org.springframework.orm.hibernate5.LocalSessionFactoryBean"> <property name="dataSource" ref="dataSource" /> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">...</prop> ... </props> </property> <property name="packagesToScan" value="com.example.model" /> </bean> // Service层 @Transactional public class MyService { @Autowired private MyEntityDao myEntityDao; public void performTransaction() { // 数据操作 } } // 数据访问层 @Repository public class MyEntityDao extends HibernateDaoSupport { public void saveEntity(MyEntity entity) { getHibernateTemplate().save(entity); } } ``` 在集成过程中,可能会遇到一些问题,比如事务传播行为的配置、回滚规则的设置、Hibernate会话缓存的控制等。开发者需要熟练掌握JTA、Hibernate和Spring的配置以及事务的属性,才能有效地解决这些问题。 除了上述集成步骤和代码配置之外,还需要了解如何进行事务隔离级别的设置、事务超时的配置、只读事务的声明、异常回滚策略以及对特定异常进行事务控制等高级事务管理特性。 对于数据库的隔离级别,JTA允许你设置事务的隔离级别,以确保并发事务运行时的数据正确性。通常的隔离级别包括读未提交(READ_UNCOMMITTED)、读已提交(READ_COMMITTED)、可重复读(REPEATABLE_READ)和串行化(SERIALIZABLE)。 事务超时的设置是为了防止长时间运行的事务阻塞资源。开发者可以配置事务在一定时间未完成的情况下自动回滚。 只读事务声明在某些场景下是有用的,比如在报告生成等只读操作中,可以提高性能。可以通过`@Transactional(readOnly=true)`来声明一个只读事务。 异常回滚策略是事务管理中的一个重要方面,开发者可以通过配置来决定哪些异常会导致事务回滚,哪些异常不会影响事务的继续执行。 总之,“jta hibernate spring 集成 代码和说明”涉及到的知识点非常丰富,需要开发者在实践中不断探索和解决各种集成中可能出现的问题,并深刻理解各个组件的内部机制以及相互之间的作用方式。
recommend-type

【AM信号调制解调技术突破】:揭秘LabVIEW与USRP的终极实践指南(专家推荐)

# 摘要 本文系统地介绍了AM信号调制解调技术,并通过LabVIEW软件平台和USRP硬件平台的实践案例,探讨了AM信号处理的实现方法和优化策略。第一章概述了AM信号调制解调技术的基础知识,第二章深入探讨了LabVIEW在AM信号处理中的角色和具体应用,包括调制和解调的基础理论及LabVIEW实现步骤。第三章介绍了USRP硬件平台的架构和功能
recommend-type

luckysheet 换行距离

<think>我们正在讨论Luckysheet,这是一个在线表格库。用户想要调整换行距离(即行高)的设置方法或参数。根据Luckysheet的文档和API,调整行高可以通过以下几种方式:1.手动拖动行边界线来调整行高。2.使用API方法设置行高。3.通过设置单元格的样式(如自动换行)来影响行高,但行高的具体数值还是需要单独设置。具体到设置行高的API,Luckysheet提供了`setRowHeight`方法。此外,也可以通过设置整个工作表的默认行高。注意:Luckysheet中,换行距离实际上就是行高(rowheight)。当单元格内容换行时,行高会自动调整以适应内容,但也可以手动设置固定的
recommend-type

Linux操作系统下的iNode客户端安装与应用

iNode Linux客户端是一种在Linux操作系统上运行的软件,旨在提供网络接入认证功能。这类客户端通常被用于需要通过特定网络接入点进行身份验证的场景,例如学术机构、企业网络以及某些提供Wi-Fi服务的公共场所。安装iNode Linux客户端可以使得用户设备能够通过iNode服务器进行身份验证,实现网络的接入。 在Linux发行版中,iNode客户端的安装和配置可能会有所不同,具体取决于所使用的Linux版本和桌面环境。然而,安装过程通常遵循一些标准步骤,比如添加iNode的软件源、导入所需的GPG密钥、安装客户端软件包以及配置软件以接入网络。 比较常用的Linux操作系统可能包括: - Ubuntu:作为最流行的桌面Linux发行版之一,Ubuntu有着庞大的社区支持和大量的文档资源,因此成为很多新用户的首选。 - Debian:以其稳定性著称的Debian,是一个广泛应用于服务器和桌面环境的Linux发行版。 - Fedora:由红帽(Red Hat)主导的Fedora项目,旨在提供最新的开源技术,它是许多创新功能的试验田。 - CentOS:作为Red Hat Enterprise Linux(RHEL)的免费版本,CentOS是许多企业和组织选择的企业级操作系统。 - openSUSE:openSUSE是另一个流行的选择,它提供了强大的软件管理工具以及企业级支持。 虽然上述操作系统各有特色,但它们共有的特点是对开源软件的支持以及强大的社区后盾,使得像iNode这样的第三方客户端可以顺利地集成到系统中。 iNode Linux客户端的文件名称为“iNodeClient”,这暗示了软件包的名称可能为“iNodeClient”或与之类似。在Linux环境中,文件压缩通常会使用tar格式,并且可能通过gzip或者bzip2进行压缩。因此,压缩包的名称可能会是“iNodeClient.tar.gz”或“iNodeClient.tar.bz2”,这取决于压缩时选择的压缩工具。 安装iNode Linux客户端后,用户需要进行一些基本的配置。这通常包括输入用户凭证,如用户名和密码,有时还需要输入特定的域名或其他参数。这些凭证会在接入网络时由iNode服务器进行验证。在一些情况下,用户可能还需要设置特定的网络配置参数,比如DNS服务器地址或者网络代理设置。 在某些情况下,由于网络的特定要求,用户可能需要处理iNode客户端的高级配置。这可能包括编辑配置文件,手动调整连接脚本或进行一些网络命令行操作。由于不同网络环境的差异,这种配置可能会非常多样。 总而言之,iNode Linux客户端的使用涉及软件的安装、配置以及维护。用户在配置过程中可能需要依赖于官方文档或者社区论坛获取帮助。对于Linux系统管理员而言,熟悉iNode客户端的安装和配置也是必要的,因为他们需要确保网络接入的顺畅并为最终用户提供支持。此外,由于Linux是一个开源的平台,也存在着不同iNode客户端的实现,这意味着可能需要根据实际情况选择合适的软件包或下载源。在使用过程中,用户应确保从官方或可信赖的源下载iNode客户端,以避免潜在的安全风险。
recommend-type

能量守恒定律:哈工大版应用实例,揭秘理论力学的能量世界

# 摘要 本文综合探讨了能量守恒定律的理论基础、数学表述、应用、计算方法、实验验证、计算机模拟以及其在现代物理学中的拓展和面临的挑战。首先,阐述了能量守恒定律的核心理论及其数学模型,包括哈工大版能量守恒定律的方程及其物理意义。其次,分析了能量守恒定律在理论力学和工程问题中的应用,如机械系统设计。进