定义一个损失函数用于一维Wasserstein AutoEncoders代码keras
时间: 2023-11-22 16:53:33 浏览: 48
Wasserstein AutoEncoders使用的损失函数是Wasserstein距离。一维Wasserstein AutoEncoders的代码如下:
```python
from keras.models import Model
from keras.layers import Input, Dense, Lambda
from keras import backend as K
from keras.optimizers import Adam
import numpy as np
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true * y_pred)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], 1),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_var / 2) * epsilon
def autoencoder(input_dim, latent_dim):
inputs = Input(shape=(input_dim,))
encoded = Dense(128, activation='relu')(inputs)
encoded = Dense(64, activation='relu')(encoded)
z_mean = Dense(latent_dim)(encoded)
z_log_var = Dense(latent_dim)(encoded)
z = Lambda(sampling)([z_mean, z_log_var])
decoded = Dense(64, activation='relu')(z)
decoded = Dense(128, activation='relu')(decoded)
outputs = Dense(input_dim, activation='linear')(decoded)
encoder = Model(inputs, [z_mean, z_log_var])
autoencoder = Model(inputs, outputs)
def kl_loss(y_true, y_pred):
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = -0.5 * K.sum(kl_loss, axis=-1)
return kl_loss
autoencoder.compile(optimizer=Adam(lr=0.0002),
loss=[wasserstein_loss, kl_loss])
return autoencoder, encoder
```
在这个代码中,我们使用了一个自定义的损失函数`wasserstein_loss`。这个损失函数可以直接用于优化Wasserstein AutoEncoders的参数。我们还定义了一个`kl_loss`函数,用于计算KL散度的损失。这个函数将被用于训练Encoder部分的参数。
阅读全文
相关推荐







