python代码:cv2.VideoCapture使用GPU

时间: 2024-03-10 09:39:47 浏览: 181
根据提供的引用内容,没有提到cv2.VideoCapture使用GPU的相关信息。cv2.VideoCapture是OpenCV中用于捕获视频的函数,它可以从摄像头、视频文件或图像序列中捕获视频帧。如果你想使用GPU加速视频处理,可以考虑使用CUDA加速的OpenCV版本,例如opencv-python-headless-cuda。在使用CUDA加速的OpenCV版本中,可以使用GPU来加速视频处理。
相关问题

023-07-13 09:22:25.024025: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-07-13 09:22:25.414554: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1654 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3050 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6 0.0 [ERROR:[email protected]] global cap.cpp:166 cv::VideoCapture::open VIDEOIO(CV_IMAGES): raised OpenCV exception: OpenCV(4.7.0) D:\a\opencv-python\opencv-python\opencv\modules\videoio\src\cap_images.cpp:253: error: (-5:Bad argument) CAP_IMAGES: can't find starting number (in the name of file): F:\新建文件夹 in function 'cv::icvExtractPattern'

这个错误提示表明在使用 OpenCV 库的 `VideoCapture` 函数时出现了错误。具体地,在你的代码中调用了 `VideoCapture` 函数,并传递了文件路径 `F:\新建文件夹` 作为参数。然而,OpenCV 无法找到该路径中的起始数字,因此导致了错误。 要解决这个问题,你可以检查文件路径是否正确,并确保路径中包含适当的数字序列。另外,还需要确认文件是否存在,并且具有适当的文件扩展名(例如,视频文件通常是`.mp4`、`.avi`等)。如果问题仍然存在,请提供完整的错误信息和相关代码,以便我能够更好地帮助你。

import cv2 import numpy as np from aidlite_gpu import aidlite model = aidlite() def preprocess_image(frame): # 图像预处理操作 return preprocessed_frame def process_video_stream(): cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() if not ret: break # 对帧图像进行预处理 preprocessed_frame = preprocess_image(frame) # 对预处理后的图像进行预测 predictions = model.predict(preprocessed_frame) # 根据预测结果进行后续操作,如绘制边界框或打印类别等 # 显示处理后的图像 cv2.imshow('Video', frame) # 按下 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() if name == 'main': process_video_stream()这是GPU加速部署摄像头进行固液体识别的代码,请进行修改

import cv2 import numpy as np from aidlite_gpu import aidlite model = aidlite() def preprocess_image(frame): # 图像预处理操作 preprocessed_frame = frame return preprocessed_frame def process_video_stream(): cap = cv2.VideoCapture(0) while cap.isOpened(): ret, frame = cap.read() if not ret: break # 对帧图像进行预处理 preprocessed_frame = preprocess_image(frame) # 对预处理后的图像进行预测 predictions = model.predict(preprocessed_frame) # 根据预测结果进行后续操作,如绘制边界框或打印类别等 # 显示处理后的图像 cv2.imshow('Video', frame) # 按下 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == '__main__': process_video_stream() 这是修改后的代码,修正了一些缩进错误,并且加入了对图像的预处理和预测操作。请注意,在预处理函数 preprocess_image() 中,我只是简单地将原始帧作为预处理后的帧返回,你可以根据自己的需求进行修改和添加具体的预处理操作。在预测操作中,我使用了模型对象 model 来调用 predict() 函数来进行预测,你需要确保模型对象的正确性和可用性。最后,我将主函数的判断条件改为 `if __name__ == '__main__':`,这是 Python 的常用写法,用来确保代码在作为主程序运行时才会执行,而在被导入时不会执行。
阅读全文

相关推荐

import cv2 # 定义 RTSP 流 URL rtsp_urls = [ "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1", "rtsp://admin:[email protected]:554/streaming/channels/1" ] # 创建 GStreamer 管道 def create_gst_pipeline(url): return ( f"rtspsrc location={url} protocols=udp latency=0 buffer-mode=0 ! " "rtpjitterbuffer latency=50 !" "rtph264depay ! h264parse ! mppvideodec !" # 使用硬件解码器 "videoconvert n-threads=4 ! " "videoscale ! video/x-raw,width=1280,height=720,framerate=8/1 ! " "queue max-size-buffers=1 leaky=downstream ! " "appsink drop=true sync=false" ) # 打开视频流 caps = [cv2.VideoCapture(create_gst_pipeline(url), cv2.CAP_GSTREAMER) for url in rtsp_urls] # 检查是否成功打开所有流 for i, cap in enumerate(caps): if not cap.isOpened(): print(f"无法打开流: {rtsp_urls[i]}") exit(1) while True: frames = [] for cap in caps: ret, frame = cap.read() if not ret: print("流结束或出错") break frames.append(frame) # 如果未能读取到所有帧,跳过本次循环 if len(frames) != len(rtsp_urls): continue # 将多路流拼接为一个画面 if len(frames) == 2: combined = cv2.hconcat(frames) elif len(frames) == 3: top = cv2.hconcat(frames[:2]) combined = cv2.vconcat([top, frames[2]]) elif len(frames) == 8: top = cv2.hconcat(frames[:4]) bottom = cv2.hconcat(frames[4:]) combined = cv2.vconcat([top, bottom]) else: combined = frames[0] # 显示合并后的画面 cv2.namedWindow("Combined", cv2.WINDOW_NORMAL | cv2.WINDOW_GUI_NORMAL) cv2.setWindowProperty("Combined",cv2.WND_PROP_OPENGL,1) cv2.imshow("Combined RTSP Streams", combined) # 按下 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 for cap in caps: if cap.isOpened(): # 显式释放 GStreamer 管道 cap.release() cv2.destroyAllWindows() 上述代码如何变成 多线程架构

import cv2 import numpy as np import time import torch import threading from ultralytics import YOLO class VideoStream: def __init__(self, src=0): self.stream = cv2.VideoCapture(src) self.grabbed, self.frame = self.stream.read() self.stopped = False self.frame_count = 0 self.last_results1 = [] self.last_results2 = [] def start(self): threading.Thread(target=self.update, args=()).start() return self def update(self): while True: if self.stopped: return if self.frame_count % 5 == 0: # 每5帧检测一次 self._load_image() time.sleep(0.01) def _load_image(self): if not self.stream.isOpened(): self.stopped = True return self.grabbed, self.frame = self.stream.read() if not self.grabbed: self.stopped = True return self.frame_count += 1 def read(self): return self.frame def stop(self): self.stopped = True self.stream.release() # 检查 GPU 是否可用 device = 'cuda' if torch.cuda.is_available() else 'cpu' # 加载模型 model1 = YOLO('FALL.pt', device=device, imgsz=320) model2 = YOLO('best.pt', device=device, imgsz=640) # 将模型转换为ONNX model1.export('model1.onnx') model2.export('model2.onnx') # 加载ONNX模型 model1_onnx = YOLO('model1.onnx', device=device, imgsz=320) model2_onnx = YOLO('model2.onnx', device=device, imgsz=640) vs = VideoStream().start() prev_time = 0 skip_frames = 5 # 每5帧进行一次检测 # 使用ONNX runtime加速 model1_onnx.model = model1_onnx.model.to_onnx() model2_onnx.model = model2_onnx.model.to_onnx() while True: current_time = time.time() frame = vs.read() if frame is None: break if frame_count % skip_frames == 0: results1 = model1_onnx(frame, imgsz=320, conf=0.5, device=device) results2 = model2_onnx(frame, imgsz=640, conf=0.5, device=device) # 处理结果1 for result in result

请根据我提供的代码,直接输出优化后的代码:import fastdeploy as fd import cv2 import numpy as np import time import threading from queue import Queue # -----------------配置参数------------------ RTSP_URL = "rtsp://admin:[email protected]:9018/video2" MODEL_PATH = "./modal/picodet_s_416_coco_lcnet_rk3588.rknn" CONFIG_FILE = "./conf/picodet_infer_cfg.yml" INFERENCE_THREADS = 3 # 根据NPU核心数调整 QUEUE_SIZE = 4 # 控制内存占用 USE_GPU_PREPROCESS = False # 是否启用GPU预处理 # -----------------多线程队列------------------ frame_queue = Queue(maxsize=QUEUE_SIZE) result_queue = Queue(maxsize=QUEUE_SIZE * 2) # -----------------模型初始化------------------ def create_model(): runtime = fd.RuntimeOption() runtime.use_rknpu2() model = fd.vision.detection.PicoDet( MODEL_PATH, "", CONFIG_FILE, runtime_option=runtime, model_format=fd.ModelFormat.RKNN ) model.postprocessor.apply_decode_and_nms() return model # -----------------视频采集线程------------------ def capture_thread(): cap = cv2.VideoCapture(RTSP_URL) cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) while True: ret, frame = cap.read() if not ret: break if frame_queue.qsize() < QUEUE_SIZE: frame_queue.put((time.time(), frame)) cap.release() # -----------------推理线程------------------ def inference_thread(model): while True: timestamp, frame = frame_queue.get() # 硬件加速预处理 if USE_GPU_PREPROCESS: frame = fd.vision.cuda.cvtColor(frame, fd.vision.CVDT_COLOR_BGR2RGB) # 执行推理 try: result = model.predict(frame) result_queue.put((timestamp, frame, result)) except Exception as e: print(f"Inference error: {e}") # -----------------可视化线程------------------ def visualize_thread(): last_ts = 0 while True: ts, frame, result = result_queue.get() # 计算推理延迟 latency = time.time() - ts print(f"End-to-end latency: {latency:.2f}s | FPS: {1 / (ts - last_ts):.1f}" if

import cv2 import torch import argparse from pathlib import Path from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords from utils.torch_utils import select_device # 定义命令行参数 parser = argparse.ArgumentParser() parser.add_argument('--source', type=str, default='e:/pythonproject/pythonproject/runs/detect/exp2/test1.mp4', help='视频文件路径') parser.add_argument('--weights', type=str, default='e:/pythonproject/pythonproject/best.pt', help='YOLOv5 模型权重文件路径') parser.add_argument('--conf-thres', type=float, default=0.25, help='预测置信度阈值') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS 的 IoU 阈值') parser.add_argument('--device', default='0', help='使用的 GPU 编号,或者 -1 表示使用 CPU') args = parser.parse_args() # 加载 YOLOv5 模型 device = select_device(args.device) model = attempt_load(args.weights, device=device).to(device).eval() # 加载视频 vid_path = args.source vid_name = Path(vid_path).stem vid_writer = None if vid_path != '0': vid_cap = cv2.VideoCapture(vid_path) else: vid_cap = cv2.VideoCapture(0) assert vid_cap.isOpened(), f'无法打开视频:{vid_path}' # 视频帧循环 while True: # 读取一帧 ret, frame = vid_cap.read() if not ret: break # 对图像进行目标检测 img = torch.from_numpy(frame).to(device) img = img.permute(2, 0, 1).float().unsqueeze(0) / 255.0 pred = model(img)[0] pred = non_max_suppression(pred, args.conf_thres, args.iou_thres, classes=None, agnostic=False) # 处理检测结果 boxes = [] for i, det in enumerate(pred): if len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round() for xyxy, conf, cls in reversed(det): label = f'{model.names[int(cls)]} {conf:.2f}' boxes.append((int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3]), label)) # 绘制矩形框 if len(boxes) > 0: for box in boxes: x1, y1, x2, y2, label = box cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # 显示帧 cv2.imshow(vid_name, frame) # 写入输出视频 if vid_writer is None: fourcc = cv2.VideoWriter_fourcc('mp4v') vid_writer = cv2.VideoWriter(f'{vid_name}_output.mp4', fourcc, 30, (frame.shape[1], frame.shape[0]), True) vid_writer.write(frame) # 按下 q 键退出 if cv2.waitKey(1) == ord('q'): break # 释放资源 vid_cap.release() if vid_writer is not None: vid_writer.release() cv2.destroyAllWindows(),请指出这段代码的错误

如何优化这段代码的性能,已达到无延迟rtsp推理的目的?目前已知的问题是NPU的利用率只是单核用到了8%,一共3个核心:import fastdeploy as fd import cv2 import numpy as np import time import threading from queue import Queue # -----------------配置参数------------------ RTSP_URL = "rtsp://admin:[email protected]:9018/video2" MODEL_PATH = "./modal/picodet_s_416_coco_lcnet_rk3588.rknn" CONFIG_FILE = "./conf/picodet_infer_cfg.yml" INFERENCE_THREADS = 3 # 根据NPU核心数调整 QUEUE_SIZE = 4 # 控制内存占用 USE_GPU_PREPROCESS = False # 是否启用GPU预处理 # -----------------多线程队列------------------ frame_queue = Queue(maxsize=QUEUE_SIZE) result_queue = Queue(maxsize=QUEUE_SIZE*2) # -----------------模型初始化------------------ def create_model(): runtime = fd.RuntimeOption() runtime.use_rknpu2() model = fd.vision.detection.PicoDet( MODEL_PATH, "", CONFIG_FILE, runtime_option=runtime, model_format=fd.ModelFormat.RKNN ) model.postprocessor.apply_decode_and_nms() return model # -----------------视频采集线程------------------ def capture_thread(): cap = cv2.VideoCapture(RTSP_URL) cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) while True: ret, frame = cap.read() if not ret: break if frame_queue.qsize() < QUEUE_SIZE: frame_queue.put((time.time(), frame)) cap.release() # -----------------推理线程------------------ def inference_thread(model): while True: timestamp, frame = frame_queue.get() # 硬件加速预处理 if USE_GPU_PREPROCESS: frame = fd.vision.cuda.cvtColor(frame, fd.vision.CVDT_COLOR_BGR2RGB) # 执行推理 try: result = model.predict(frame) result_queue.put((timestamp, frame, result)) except Exception as e: print(f"Inference error: {e}") # -----------------可视化线程------------------ def visualize_thread(): last_ts = 0 while True: ts, frame, result = result_queue.get() # 计算推理延迟 latency = time.time() - ts print(f"End-to

import cv2 import torch import numpy as np class MonoDistance: def __init__(self, cam_matrix, person_height=1.7): self.cam_matrix = cam_matrix self.ref_height = person_height def estimate(self, bbox): pixel_height = bbox[3] - bbox[1] return (self.ref_height * self.cam_matrix[1,1]) / pixel_height def main(): # 加载模型 model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # 相机参数 cam_matrix = np.array([[900, 0, 640], [0, 900, 360], [0, 0, 1]]) distance_estimator = MonoDistance(cam_matrix) cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) while True: ret, frame = cap.read() if not ret: break # 推理 results = model(frame) detections = results.pandas().xyxy[0] # 处理行人检测 for _, row in detections[detections['name'] == 'person'].iterrows(): x1, y1, x2, y2 = map(int, row[['xmin','ymin','xmax','ymax']]) distance = distance_estimator.estimate((x1,y1,x2,y2)) cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,0), 2) cv2.putText(frame, f"{distance:.2f}m", (x1,y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255,255), 2) cv2.imshow('Demo', frame) if cv2.waitKey(1) == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": main() import cv2 import torch import numpy as np class MonoDistance: def __init__(self, cam_matrix, dist_coeffs, person_height=1.7): self.cam_matrix = cam_matrix # 相机内参矩阵 self.dist_coeffs = dist_coeffs # 畸变系数 self.ref_height = person_height # 行人平均身高 def estimate(self, bbox): # 基于目标高度测距 y2 = bbox[3] y1 = bbox[1] pixel_height = abs(y2 - y1) return (self.ref_height * self.cam_matrix[1, 1]) / pixel_height def main(): # 加载改进模型 model = torch.hub.load('ultralytics/yolov5', 'custom', path='weights/best.pt') # 相机标定参数 cam_matrix = np.array([[900, 0, 640], [0, 900, 360], [0, 0, 1]]) dist_coeffs = np.array([-0.12, 0.25, 0, 0]) # 初始化测距模块 distance_estimator = MonoDistance(cam_matrix, dist_coeffs) # 摄像头初始化 cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) while True: ret, frame = cap.read() if not ret: break # YOLOv5检测 results = model(frame) detections = results.pandas().xyxy[0] # 处理每个检测目标 for _, row in detections[detections['name'] == 'person'].iterrows(): x1, y1, x2, y2 = map(int, row[['xmin', 'ymin', 'xmax', 'ymax']]) # 测距计算 distance = distance_estimator.estimate((x1, y1, x2, y2)) # 绘制结果 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f"{distance:.2f}m", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2) # 显示帧率 cv2.putText(frame, f"FPS: {model.fps:.1f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.imshow('Pedestrian Detection', frame) if cv2.waitKey(1) == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": main()修改上述代码,并详细指导用户如何把代码中yolov5模型,换成用户本地部署好的yolov5模型

jetauto@jetauto-desktop:~/jetauto_ws/src/jetauto_example/scripts/yolov5_detect$ python3 xwc.py [10/29/2024-18:41:42] [TRT] [I] [MemUsageChange] Init CUDA: CPU +224, GPU +0, now: CPU 265, GPU 3416 (MiB) [10/29/2024-18:41:42] [TRT] [I] Loaded engine size: 22 MiB [10/29/2024-18:41:47] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +158, GPU +36, now: CPU 452, GPU 3479 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +240, GPU -12, now: CPU 692, GPU 3467 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +21, now: CPU 0, GPU 21 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +0, now: CPU 670, GPU 3445 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +0, now: CPU 670, GPU 3445 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +34, now: CPU 0, GPU 55 (MiB) bingding: data (3, 480, 640) bingding: prob (38001, 1, 1) (python3:31020): GStreamer-CRITICAL **: 18:41:55.346: Trying to dispose element pipeline0, but it is in READY instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. [ WARN:[email protected]] global /home/jetauto/opencv/modules/videoio/src/cap_gstreamer.cpp (1356) open OpenCV | GStreamer warning: unable to start pipeline (python3:31020): GStreamer-CRITICAL **: 18:41:55.347: Trying to dispose element videoconvert0, but it is in PAUSED instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. [ WARN:[email protected]] global /home/jetauto/opencv/modules/videoio/src/cap_gstreamer.cpp (862) isPipelinePlaying OpenCV | GStreamer warning: GStreamer: pipeline have not been created (python3:31020): GStreamer-CRITICAL **: 18:41:55.347: Trying to dispose element appsink0, but it is in READY instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. (python3:31020): GStreamer-CRITICAL **: 18:41:55.350: gst_element_post_message: assertion 'GST_IS_ELEMENT (element)' failed ^CTraceback (most recent call last): File "xwc.py", line 431, in <module> boxes, scores, classid = yolov5_wrapper.infer(frame) File "xwc.py", line 153, in infer input_image, image_raw, origin_h, origin_w = self.preprocess_image(raw_image_generator) File "xwc.py", line 264, in preprocess_image image = np.transpose(image, [2, 0, 1]) File "<__array_function__ internals>", line 6, in transpose File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 653, in transpose return _wrapfunc(a, 'transpose', axes) KeyboardInterrupt ------------------------------------------------------------------- PyCUDA ERROR: The context stack was not empty upon module cleanup. ------------------------------------------------------------------- A context was still active when the context stack was being cleaned up. At this point in our execution, CUDA may already have been deinitialized, so there is no way we can finish cleanly. The program will be aborted now. Use Context.pop() to avoid this problem. 解释

import cv2 import numpy as np import time # 下载权重文件、配置文件 net = cv2.dnn.readNet("yolov3-tiny.weights", "cfg/yolov3-tiny.cfg") classes = [] with open("coco.names", "r") as f: classes = [line.strip() for line in f.readlines()] layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] colors = np.random.uniform(0, 255, size=(len(classes), 3)) # 输入待检测视频、或打开摄像头实时检测 # cap = cv2.VideoCapture(0) # 参数为0是打开摄像头,用摄像头实时检测 cap = cv2.VideoCapture("walking.mp4") # 参数为文件名表示打开视频 font = cv2.FONT_HERSHEY_PLAIN starting_time = time.time() frame_id = 0 while True: _, frame = cap.read() frame_id += 1 height, width, channels = frame.shape # 检测对象 blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(output_layers) # 在屏幕上显示信息 class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.2: # 目标检测 center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) # 绘制矩形框 x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.8, 0.3) for i in range(len(boxes)): if i in indexes: x, y, w, h = boxes[i] label = str(classes[class_ids[i]]) confidence = confidences[i] color = colors[class_ids[i]] cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.putText(frame, label + " "

最新推荐

recommend-type

PLC大作业.doc

PLC大作业.doc
recommend-type

端到端语音识别系统.pptx

端到端语音识别系统.pptx
recommend-type

WEB精确打印技术:教你实现无差错打印输出

根据给定文件信息,本篇将深入探讨实现Web精确打印的技术细节和相关知识点。 Web精确打印是指在Web应用中实现用户可以按需打印网页内容,并且在纸张上能够保持与屏幕上显示相同的布局、格式和尺寸。要实现这一目标,需要从页面设计、CSS样式、打印脚本以及浏览器支持等方面进行周密的考虑和编程。 ### 页面设计 1. **布局适应性**:设计时需要考虑将网页布局设计成可适应不同尺寸的打印纸张,这意味着通常需要使用灵活的布局方案,如响应式设计框架。 2. **内容选择性**:在网页上某些内容可能是为了在屏幕上阅读而设计,这不一定适合打印。因此,需要有选择性地为打印版本设计内容,避免打印无关元素,如广告、导航栏等。 ### CSS样式 1. **CSS媒体查询**:通过媒体查询,可以为打印版和屏幕版定义不同的样式。例如,在CSS中使用`@media print`来设置打印时的背景颜色、边距等。 ```css @media print { body { background-color: white; color: black; } nav, footer, header, aside { display: none; } } ``` 2. **避免分页问题**:使用CSS的`page-break-after`, `page-break-before`和`page-break-inside`属性来控制内容的分页问题。 ### 打印脚本 1. **打印预览**:通过JavaScript实现打印预览功能,可以在用户点击打印前让他们预览将要打印的页面,以确保打印结果符合预期。 2. **触发打印**:使用JavaScript的`window.print()`方法来触发用户的打印对话框。 ```javascript document.getElementById('print-button').addEventListener('click', function() { window.print(); }); ``` ### 浏览器支持 1. **不同浏览器的兼容性**:需要考虑不同浏览器对打印功能的支持程度,确保在主流浏览器上都能获得一致的打印效果。 2. **浏览器设置**:用户的浏览器设置可能会影响打印效果,例如,浏览器的缩放设置可能会改变页面的打印尺寸。 ### 实践技巧 1. **使用辅助工具类**:如Bootstrap等流行的前端框架中包含了专门用于打印的样式类,可以在设计打印页面时利用这些工具快速实现布局的调整。 2. **测试打印**:在不同的打印机和纸张尺寸上测试打印结果,确保在所有目标打印环境下都有良好的兼容性和效果。 3. **优化图片和图形**:确保所有用于打印的图片和图形都有足够的分辨率,且在打印时不会因为尺寸缩小而失真。 4. **使用打印样式表**:创建一个专门的打印样式表(print.css),并将其链接到HTML文档的`<link>`标签中。这样可以在打印时引用独立的CSS文件,实现对打印内容的精细控制。 ### 总结 Web精确打印的实现涉及到前端设计和开发的多个方面,从设计、样式的编写到JavaScript脚本的运用,都需要紧密配合。开发者需要具备对打印技术深刻的理解,并且能够熟练使用现代前端技术来达到精确打印的要求。通过上述的知识点介绍,可以为开发者提供一个全面的指导,帮助他们在Web项目中实现高质量的打印输出。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

服务器无感部署

<think>首先,用户的问题是:“我想在不引起服务中断的情况下进行服务器部署请问如何实现服务器无感部署无需停机的部署方法”。这涉及到零停机部署,确保服务在更新过程中不间断。我需要参考提供的引用:-引用[1]:讨论了Web服务的无缝更新,强调零停机部署的重要性。 -引用[2]:提供了自动化运维中零停机构建与部署的实践,包括命令示例。 -引用[3]:描述了无感知部署方案,如蓝绿部署。 -引用[4]:提到了负载均衡和服务器横向分布的重要性。系统级指令:-所有行内数学表达式使用$...$格式。-独立公式使用$$...$$格式并单独成段。 -LaTeX语法正确。-使用中文回答。-生成相关问题。 -在回
recommend-type

C++源代码实现:分段线性插值与高斯消去法

根据提供的文件信息,我们可以详细解析和讨论标题和描述中涉及的知识点。以下内容将围绕“计算方法C++源代码”这一主题展开,重点介绍分段线性插值、高斯消去法、改进的EULAR方法和拉格朗日法的原理、应用场景以及它们在C++中的实现。 ### 分段线性插值(Piecewise Linear Interpolation) 分段线性插值是一种基本的插值方法,用于在一组已知数据点之间估算未知值。它通过在相邻数据点间画直线段来构建一个连续函数。这种方法适用于任何连续性要求不高的场合,如图像处理、计算机图形学以及任何需要对离散数据点进行估算的场景。 在C++中,分段线性插值的实现通常涉及到两个数组,一个存储x坐标值,另一个存储y坐标值。通过遍历这些点,我们可以找到最接近待求点x的两个数据点,并在这两点间进行线性插值计算。 ### 高斯消去法(Gaussian Elimination) 高斯消去法是一种用于解线性方程组的算法。它通过行操作将系数矩阵化为上三角矩阵,然后通过回代求解每个未知数。高斯消去法是数值分析中最基本的算法之一,广泛应用于工程计算、物理模拟等领域。 在C++实现中,高斯消去法涉及到对矩阵的操作,包括行交换、行缩放和行加减。需要注意的是,算法在实施过程中可能遇到数值问题,如主元为零或非常接近零的情况,因此需要采用适当的措施,如部分或完全选主元技术,以确保数值稳定性。 ### 改进的EULAR方法 EULAR方法通常是指用于解决非线性动力学系统的数值积分方法,尤其是在动力系统的仿真中应用广泛。但在这里可能是指对Euler方法的某种改进。Euler方法是一种简单的单步求解初值问题的方法,适用于求解常微分方程的初值问题。 Euler方法的基本思想是利用当前点的导数信息来预测下一个点的位置,进而迭代求解整个系统。在C++实现中,通常需要定义一个函数来描述微分方程,然后根据这个函数和步长进行迭代计算。 ### 拉格朗日法(Lagrange Interpolation) 拉格朗日插值法是一种多项式插值方法,它构建一个最高次数不超过n-1的多项式,使得这个多项式在n个已知数据点的值与这些点的已知值相等。拉格朗日插值法适用于数据点数量较少,且对插值精度要求较高的情况。 在C++中,实现拉格朗日插值法需要计算每个基多项式的值并将其乘以对应的已知函数值,然后将这些多项式相加得到最终的插值多项式。这一过程可能会涉及到大量计算,尤其是当数据点数量增多时。 ### 源代码文件列表 - 计算方法代码 虽然文件列表仅提供了“计算方法代码”这一名称,我们可以推断,压缩包中包含了上述所有计算方法的C++源代码文件。每个文件可能对应一个算法的实现,例如,可能会有一个名为“GaussianElimination.cpp”的文件专门用于实现高斯消去法。 ### 结论 文件信息指出,压缩包内包含了一系列计算方法的C++源代码,包括分段线性插值、高斯消去法、改进的EULAR方法和拉格朗日法等。这些方法在数值分析和科学计算领域扮演着重要的角色,它们各自的C++实现展现了程序员在面对不同类型问题时所采取的算法策略和编程技巧。这些代码对于理解算法原理和将其应用到实际问题中是非常有价值的资源。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

代码解释 ```cpp LinkList tail = L; // 尾指针指向头结点 ```

<think>我们分析代码行:`LinkList tail= L;//尾指针指向头结点`在完整的代码中,这段代码位于创建头结点之后,尾插法创建链表之前。功能和作用:1.定义了一个LinkList类型的指针变量tail,并将其初始化为指向头结点L。2.注释说明“尾指针指向头结点”,这意味着tail将作为链表尾部的指针,在尾插法构建链表时用于跟踪当前链表的最后一个节点。3.在后续的尾插法循环中,每次添加新节点时,都会将新节点链接到tail所指向的节点(即当前尾节点)的后面,然后更新tail指向这个新节点,以保持tail始终指向链表的最后一个节点。4.这样做的目的是为了提高链表构建的效率。因为如果不
recommend-type

VC摄像头远程控制与图像采集传输技术

从提供的文件信息中,我们可以提取出关于VC(Visual C++)环境下对摄像头的控制,图像采集,编解码过程以及远程传输的关键知识点。接下来,我将对这些知识点进行详细的解释和阐述。 ### VC摄像头控制 在VC环境中,对摄像头进行控制通常涉及Windows API函数调用或者第三方库的使用。开发者可以通过调用DirectShow API或者使用OpenCV等图像处理库来实现摄像头的控制和图像数据的捕获。这包括初始化摄像头设备,获取设备列表,设置和查询摄像头属性,以及实现捕获图像的功能。 ### 图像的采集 图像采集是指利用摄像头捕获实时图像或者视频的过程。在VC中,可以使用DirectShow SDK中的Capture Graph Builder和Sample Grabber Filter来实现从摄像头捕获视频流,并进行帧到帧的操作。另外,OpenCV库提供了非常丰富的函数用于图像采集,包括VideoCapture类来读取视频文件或者摄像头捕获的视频流。 ### 编解码过程 编解码过程是指将采集到的原始图像数据转换成适合存储或传输的格式(编码),以及将这种格式的数据还原成图像(解码)的过程。在VC中,可以使用如Media Foundation、FFmpeg、Xvid等库进行视频数据的编码与解码工作。这些库能够支持多种视频编解码标准,如H.264、MPEG-4、AVI、WMV等。编解码过程通常涉及对压缩效率与图像质量的权衡选择。 ### 远程传输 远程传输指的是将编码后的图像数据通过网络发送给远程接收方。这在VC中可以通过套接字编程(Socket Programming)实现。开发者需要配置服务器和客户端,使用TCP/IP或UDP协议进行数据传输。传输过程中可能涉及到数据包的封装、发送、接收确认、错误检测和重传机制。更高级的传输需求可能会用到流媒体传输协议如RTSP或HTTP Live Streaming(HLS)。 ### 关键技术实现 1. **DirectShow技术:** DirectShow是微软提供的一个用于处理多媒体流的API,它包含了一系列组件用于视频捕获、音频捕获、文件读写、流媒体处理等功能。在VC环境下,利用DirectShow可以方便地进行摄像头控制和图像数据的采集工作。 2. **OpenCV库:** OpenCV是一个开源的计算机视觉和机器学习软件库。它提供了许多常用的图像处理函数和视频处理接口,以及强大的图像采集功能。在VC中,通过包含OpenCV库,开发者可以快速实现图像的采集和处理。 3. **编解码库:** 除了操作系统自带的编解码技术外,第三方库如FFmpeg是视频处理领域极为重要的工具。它支持几乎所有格式的音视频编解码,是一个非常强大的多媒体框架。 4. **网络编程:** 在VC中进行网络编程,主要涉及到Windows Sockets API。利用这些API,可以创建数据包的发送和接收,进而实现远程通信。 5. **流媒体协议:** 实现远程视频传输时,开发者可能会使用到RTSP、RTMP等流媒体协议。这些协议专门用于流媒体数据的网络传输,能够提供稳定和实时的传输服务。 ### 结语 文件标题《VC摄像头控制.图像得采集以及远程传输等》所涉及的内容是多方面的,涵盖了图像处理与传输的多个关键步骤,包括摄像头控制、图像采集、视频编解码以及网络传输。对于希望在VC环境下进行视频处理开发的工程师而言,了解上述技术细节至关重要。只有掌握了这些知识点,才能设计出稳定、高效的视频处理及传输系统。希望本篇内容能够为从事相关工作或学习的朋友们提供有益的参考与帮助。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和