如何修改sscanf的实现,使其能够从usart_read_buffer数组中正确读取数据到buffer数组里,usart_read_buffer的格式为%d%d%d-%d%d%d,将这六个数分别存储到buffer【6】中

时间: 2025-04-11 08:37:40 浏览: 41
<think>好的,我现在需要帮助用户解决如何自定义实现类似sscanf的功能,解析特定格式的字符串,并将六个整数存入数组。首先,用户的问题是关于修改sscanf的实现,从USART缓冲区读取数据,并按照格式%d%d%d-%d%d%d解析六个整数到buffer数组。我需要仔细分析这个问题,并给出可行的解决方案。 首先,用户提到的sscanf通常用于从字符串中按照指定格式解析数据。但用户可能是在嵌入式环境中,使用USART接收数据,需要自定义解析函数,可能因为标准库函数不够灵活,或者资源受限,或者需要更高的效率。另外,用户希望解析的格式是三个数字连在一起,接着一个减号,再三个数字,例如“123456-789012”,需要提取六个整数。 接下来,我需要考虑如何手动解析这样的字符串。通常,手动解析需要逐个字符处理,识别数字部分,跳过非数字字符(比如减号),并将连续的数字转换为整数。这涉及到字符遍历、数字字符转换为整数、处理可能的符号以及错误检测等。 可能的步骤包括: 1. 遍历USART缓冲区中的字符,直到遇到字符串结束符。 2. 定义状态变量,记录当前是处于解析数字还是分隔符的阶段。 3. 当遇到数字字符时,开始累积数字,直到遇到非数字字符,然后将累积的数字字符串转换为整数,存入buffer数组。 4. 遇到减号时,视为分隔符,跳过,继续解析后面的数字。 5. 需要处理连续的数字,例如三个数字一组,可能不需要显式的分隔符,但用户给出的格式中有减号,因此需要正确跳过减号。 6. 需要考虑错误情况,比如无效字符、数字溢出、格式不符等,但用户可能暂时不需要复杂的错误处理,可以留作后续扩展。 然后,我需要参考用户提供的引用内容。引用[1]提到使用sscanf解析二进制和十六进制字符串,用户可能希望类似的功能,但需要自定义实现。引用[4]提到从串口读取数据并解析特定协议,可能涉及状态机和协议处理,这可能对处理不同协议的数据有帮助,但用户的问题更专注于特定格式的解析。 接下来,设计函数的结构。函数需要接收输入字符串(usart_read_buffer)、目标数组buffer,以及可能的最大长度。需要逐个字符处理,收集数字,当遇到非数字字符时,结束当前数字的收集,转换并存储到buffer中。对于减号,视为分隔符,但需要确保它在正确的位置出现。 例如,输入字符串“123456-789012”应解析为buffer[0]=123, buffer[1]=456, buffer[2]=0(?这里可能有问题),或者可能用户的意思是每个%d对应一个数字?或者每个%d对应三位数?需要明确格式的含义。例如,格式%d%d%d-%d%d%d可能意味着三个连续的数字,每个%d对应一个整数,可能是一位或多位数字,但用户示例中的输入可能有三位数,比如三个三位数,然后减号,再三个三位数,总共六个三位数,但这样的输入如“123456-789012”会被解析为六个数字:123, 456, 789, 012?或者每个%d对应单独的数字?这需要明确。 可能需要用户澄清,但假设格式是六个独立的整数,中间有一个减号分隔。例如,输入“123-456-789”可能不符合,但正确的输入是“123456-789012”解析为六个整数:1、2、3、4、5、6?这显然不合理。或者,每个%d对应三位数,例如前三个数字是第一个整数,接下来三个是第二个,然后是减号,接着三个第三个,三个第四个,等等?例如,输入“123456-789012”会被解析为123, 456, 789, 012?但这样只有四个整数,而用户需要六个。可能格式中的每个%d对应一个整数,可能由连续的数字组成,直到遇到非数字字符。例如,“123a45-6b789”会被解析为123, 45,然后遇到减号,接着6, 789,但可能不符合用户的格式要求。 或者,用户的格式字符串“%d%d%d-%d%d%d”可能意味着三个整数,接着一个减号,再三个整数,总共六个整数。例如,输入“12 34 56-78 90 12”会被解析为12、34、56、78、90、12。但可能用户的实际输入中没有空格,例如“123456-789012”,但这里的每个%d可能需要分隔符,或者用户允许连续的数字被解析为多个整数?这可能需要更明确的格式定义,但用户提供的示例输入可能更类似于“123456-789012”,但需要解析为六个一位数,即1,2,3,4,5,6,然后是减号后的7,8,9,0,1,2?这显然不太合理,因此可能需要用户更清晰的示例,但根据问题描述,可能需要将字符串分解为六个整数,可能每个整数由连续的数字组成,直到遇到非数字字符,或者每个%d对应一个数字字符? 这里可能存在歧义,因此需要进一步分析。例如,标准的sscanf处理格式字符串时,%d会读取连续的数字,直到遇到非数字字符。因此,如果输入字符串是“123-456”,格式是“%d%d%d-%d%d%d”,那么前三个%d会读取1、2、3,然后遇到减号,后面的三个%d会读取4、5、6。但这样的话,每个%d对应一个字符?这显然不对,因为%d会读取整个数字。例如,输入“123456-789012”,按照格式“%d%d%d-%d%d%d”,第一个%d会读取整个123456作为一个整数,第二个%d尝试读取时可能失败,因为后面是减号。因此,这可能不是用户想要的。可能用户的格式字符串有误,或者希望将每个数字字符单独解析为整数。例如,将“123456-789012”解析为六个一位数的整数:1,2,3,4,5,6,然后减号,再7,8,9,0,1,2,但这样总共有12个数字,远超过六个。或者,可能用户希望将前三个数字作为一个整数,接下来的三个作为第二个,然后减号,后面三个作为第四个,最后三个作为第五个?但这样也不符合六个整数的要求。 这表明用户可能在格式字符串上有误解,或者问题描述存在错误。需要进一步确认,但假设用户希望按照每个%d读取一个整数,可能连续的数字组成一个整数,例如,字符串中的前三个数字各为一个整数,接着减号,后面的三个数字各为一个整数。例如,输入“1 2 3-4 5 6”会被解析为1,2,3,4,5,6。但实际输入可能没有空格,而是类似“123-456”,此时每个%d读取整个数字,导致前三个%d读取123,后面的三个%d无法正确解析,因为减号后的456可能被读取为一个整数,但总共有四个整数,不够六个。这说明可能用户的格式字符串与实际输入不符,或者需要更明确的解析规则。 因此,可能需要用户明确每个%d对应的数字部分是如何分隔的。例如,是否每个%d对应固定长度的数字(如三位数),或者使用其他分隔符。根据用户给出的格式字符串“%d%d%d-%d%d%d”,可能希望前三个整数由前面的三个数字组成,减号分隔,后三个整数由后面的三个数字组成。例如,输入“123456-789012”会被分解为前三个数字123,接着456,然后减号,后面的789,012,但这样实际上可能只有四个整数,或者每个数字单独解析?这显然存在问题,因此可能需要重新理解用户的意图。 可能用户的实际输入格式是每个%d对应一个数字段,例如,前三个整数可能由数字组成,用非数字字符分隔,减号作为分隔符,后面的三个同理。例如,输入“123 456-789 012”,这样前三个整数是123, 456,后面的三个是789, 012,但数量不足。这可能说明用户的问题描述中存在格式字符串与实际输入的不一致,或者需要更灵活的处理方式。 在这种情况下,可能需要假设用户希望将整个字符串中的连续数字部分解析为整数,忽略非数字字符,直到收集到六个整数。例如,输入“12a34-56b78c90”,会被解析为12,34,56,78,90,但数量不足六个。因此,可能需要确保输入字符串中有足够的数字部分,或者函数在无法找到足够数字时如何处理。 综上,可能用户的真实需求是从字符串中提取所有连续的数字部分,将其转换为整数,直到填满buffer数组中的六个元素。例如,输入“123-45-6789”,会被解析为123,45,6789,但只有三个整数,不足六个。因此,可能需要更明确的输入格式,或者函数在解析不足六个时报错。 但根据用户的问题描述,格式字符串是“%d%d%d-%d%d%d”,可能意味着六个整数,前三个和后三个由减号分隔。例如,输入“12 34 56-78 90 12”,这样六个整数。但用户可能希望处理类似“123456-789012”的输入,将其分解为六个一位数:1,2,3,4,5,6,减号,7,8,9,0,1,2,但这样每个%d对应一个数字字符,这可能不符合常规的sscanf行为,因此需要自定义解析。 因此,自定义函数需要逐个字符处理,将连续的数字字符转换为整数,遇到非数字字符时结束当前整数的解析,并开始下一个。减号作为分隔符,但可能出现在第三和第四整数之间。例如,输入“123-456789”会被解析为123, 456, 789,但需要六个整数,因此可能输入需要类似“123456-789012”,分解为六个三位数?但这样每个三位数作为整数,可能需要前三个数字是123,接下来是456,减号,然后是789,012,但这样只有四个整数,仍不足六个。 这表明用户的格式字符串可能存在错误,或者需要更明确的解析规则。可能用户希望将输入字符串视为六个独立的数字,每个数字可以是任意长度,但由非数字字符分隔。例如,输入“1,2,3-4,5,6”会被解析为六个数字1,2,3,4,5,6,其中逗号和减号作为分隔符。 在这种情况下,自定义函数需要遍历字符串,提取所有连续的数字部分,忽略非数字字符,并将它们依次存入buffer,直到收集到六个整数。这可能更符合用户的需求,即使格式字符串中的减号位置不一定固定。 因此,解决方案的大致步骤为: 1. 初始化索引变量,用于跟踪当前处理的字符位置和buffer的存储位置。 2. 遍历输入字符串的每个字符。 3. 当遇到数字字符时,开始累积数字,直到遇到非数字字符。 4. 将累积的数字字符串转换为整数,存入buffer,并递增buffer索引。 5. 当buffer填满六个整数时,停止解析。 6. 处理可能的错误情况,如无效字符、不足六个整数等,但根据用户需求,可能暂时忽略错误处理。 现在,具体实现需要考虑如何累积数字字符,并将其转换为整数。例如,可以使用一个临时缓冲区来存储当前数字的字符,然后调用atoi函数,或者手动计算整数值。 例如,函数的大致代码结构可能如下: ```c int custom_sscanf(char *input, int *buffer, int size) { int index = 0; // buffer的当前索引 int num = 0; // 当前累积的数字 int in_number = 0; // 是否正在处理数字 for (int i = 0; input[i] != '\0' && index < size; i++) { if (isdigit(input[i])) { num = num * 10 + (input[i] - '0'); in_number = 1; } else { if (in_number) { buffer[index++] = num; num = 0; in_number = 0; } // 忽略非数字字符 } } // 处理末尾的数字 if (in_number && index < size) { buffer[index++] = num; } // 返回成功解析的整数数量 return index; } ``` 但该函数会提取所有连续的数字部分,直到填满buffer。例如,输入“123-456-789”会解析为123,456,789,buffer需要size至少为3。但用户需要解析六个整数,因此输入必须包含至少六个数字段。例如,输入“1a2b3c4d5e6f”会被解析为1,2,3,4,5,6。 但根据用户提供的格式字符串“%d%d%d-%d%d%d”,可能希望前三个数字在减号前,后三个在减号后。例如,输入“123456-789012”会被分解为123,456,789,012,但只有四个数字段。这可能与用户的需求不符,因此需要调整解析逻辑,可能要求在减号前后各三个数字段。 因此,可能需要更严格的解析逻辑,确保减号分隔前三和后三数字。例如,将字符串分为两部分:减号前的部分和减号后的部分,每部分包含三个数字段。这可能涉及更复杂的处理,例如分割字符串为前后两部分,然后分别解析每部分中的三个数字。 例如,步骤如下: 1. 将输入字符串以减号分隔为前后两部分。 2. 对前部分解析三个整数。 3. 对后部分解析三个整数。 4. 合并这六个整数存入buffer。 这种方法需要处理字符串分割,并确保每部分有三个整数。这可能更符合用户指定的格式字符串。 例如,代码可能如下: ```c int parse_part(char *str, int *buffer, int max) { int count = 0; int num = 0; int in_number = 0; for (int i = 0; str[i] != '\0' && count < max; i++) { if (isdigit(str[i])) { num = num * 10 + (str[i] - '0'); in_number = 1; } else { if (in_number) { buffer[count++] = num; num = 0; in_number = 0; } } } if (in_number && count < max) { buffer[count++] = num; } return count; } int custom_sscanf(char *input, int *buffer) { char *split = strchr(input, '-'); if (split == NULL) { return -1; // 没有减号 } *split = '\0'; // 分割字符串为前后两部分 int part1 = parse_part(input, buffer, 3); int part2 = parse_part(split + 1, buffer + 3, 3); return (part1 + part2 == 6) ? 6 : -1; } ``` 这样,函数将输入字符串分为减号前和减号后两部分,每部分解析三个整数。例如,输入“123 456 789-012 345 678”会被正确解析为六个整数。但若输入中没有减号,或某部分不足三个整数,则返回错误。 不过,用户的问题中提到示例输入可能没有显式的分隔符,如空格,可能直接是连续的数字和减号。例如,“123456-789012”,这样减号前是六个数字,减号后是六个数字,但需要解析为前三后三。这种情况下,parse_part函数会将前六个数字视为一个整数123456,导致part1为1,无法满足三个整数的要求。因此,这种处理方式可能不适用于连续数字的情况。 这表明,用户可能需要每个%d对应固定长度的数字。例如,每个%d对应三位数,因此前三个三位数,减号,后三个三位数。例如,输入“123456-789012”会被解析为123,456,789,012,但这样只有四个整数,不足六个。因此,这种思路可能不可行。 可能用户的格式字符串中的每个%d对应一个单独的数字,即每个整数由单个数字字符组成。例如,输入“1-2-3-4-5-6”会被解析为1,2,3,4,5,6。但这样的格式字符串可能应为“%d-%d-%d-%d-%d-%d”,但用户给出的格式是“%d%d%d-%d%d%d”,即前三和后三之间有一个减号。因此,输入应为“123-456”,其中每个%d对应一个数字字符,例如,前三为1,2,3,后三为4,5,6。但sscanf在这种情况下,每个%d会读取整个数字,如“123”会被视为一个整数,而不是三个单独的整数。 因此,用户可能需要自定义解析,将每个数字字符单独作为一个整数。例如,输入“123-456”会被解析为1,2,3,4,5,6。这需要逐个字符处理,忽略减号,并将每个数字字符转换为整数。 此时,自定义函数的逻辑可以是遍历每个字符,将每个数字字符转换为一个整数,忽略非数字字符,直到收集到六个整数。例如: ```c int custom_sscanf(char *input, int *buffer, int size) { int count = 0; for (int i = 0; input[i] != '\0' && count < size; i++) { if (isdigit(input[i])) { buffer[count++] = input[i] - '0'; } } return count; } ``` 这将提取输入中的所有数字字符,每个字符作为一个整数存入buffer。例如,输入“123-456”将得到buffer[0]=1, buffer[1]=2, buffer[2]=3, buffer[3]=4, buffer[4]=5, buffer[5]=6。这可能符合用户的需求,即六个整数。 用户的问题中提到格式字符串是“%d%d%d-%d%d%d”,这可能意味着每个%d对应一个数字字符,而减号只是分隔符。因此,自定义函数需要提取前三个数字字符作为前三整数,跳过减号,然后提取后三个数字字符作为后三整数。 例如,输入字符串“123-456”将被解析为1,2,3,4,5,6。输入“1a2b3-4c5d6”也将解析为1,2,3,4,5,6。这样,函数将忽略所有非数字字符,并提取前六个数字字符作为六个整数。 因此,代码实现可能如下: ```c int custom_sscanf(const char *input, int *buffer) { int count = 0; for (int i = 0; input[i] != '\0' && count < 6; i++) { if (isdigit((unsigned char)input[i])) { buffer[count++] = input[i] - '0'; } } return (count == 6) ? 1 : 0; // 返回成功与否 } ``` 但这样只能处理每个数字字符作为单独的数字,例如,用户可能需要将连续的数字作为整体,如“123”解析为123,而非1,2,3。因此,需要明确用户的需求。 用户的问题中提到“示例输入为 usart_read_buffer 数据来源 USART 缓冲区”,可能实际数据格式是类似“123456-789012”,需要解析为六个三位数,如123,456,789,012,但这只有四个整数,不符合六個的要求。因此,可能需要重新理解用户的真实需求。 可能用户的真实需求是解析类似“123-456”这样的输入,其中前三个数字字符组成第一个整数,中间三个组成第二个,减号后三个组成第三、四、五、六?这显然不合理,因此可能需要用户进一步澄清。 但根据用户提供的格式字符串“%d%d%d-%d%d%d”,可能每个%d对应一个整数,而用户希望将整个字符串中的数字解析为六个整数,前三个在减号前,后三个在减号后,每个整数由连续的数字组成。例如,输入“123 456-789 012 345 6”会被解析为123,456,789,012,345,6。但这样减号前后可能各有三个整数,总共六个。 在这种情况下,自定义函数需要先解析减号前的部分,提取三个整数,再解析减号后的部分,提取三个整数。这可以通过分割字符串为两部分,然后分别解析每部分中的三个整数。 因此,代码可能如下: ```c #include <stdio.h> #include <ctype.h> #include <string.h> int parse_section(const char *str, int *buffer, int max) { int count = 0; int num = 0; int in_number = 0; for (int i = 0; str[i] != '\0' && count < max; i++) { if (isdigit(str[i])) { num = num * 10 + (str[i] - '0'); in_number = 1; } else { if (in_number) { buffer[count++] = num; num = 0; in_number = 0; } } } if (in_number) { buffer[count++] = num; } return count; } int custom_parser(const char *input, int *buffer) { char *dash = strchr(input, '-'); if (!dash) { return -1; // 格式错误,没有减号 } // 分割前后部分 char part1[128], part2[128]; strncpy(part1, input, dash - input); part1[dash - input] = '\0'; strcpy(part2, dash + 1); int parsed1 = parse_section(part1, buffer, 3); int parsed2 = parse_section(part2, buffer + parsed1, 3); if (parsed1 + parsed2 != 6) { return -1; // 解析数量不足 } return 0; } ``` 这样,函数将输入分为两部分,每部分解析三个整数。例如,输入“123 456 789-012 345 678”将被正确解析。但若输入中没有足够的整数,则返回错误。 综上,根据用户的具体需求,可能有不同的解析方式。假设用户希望提取六个独立的整数,每个由连续的数字组成,前三个在减号前,后三个在减号后,那么上述代码是一个可能的解决方案。否则,如果用户希望提取所有数字字符作为单独的数字,则可以使用逐个字符处理的方式。 最后,用户可能需要将解析后的整数存入buffer数组,并确保函数能够正确处理USART缓冲区中的数据。此外,用户提到需要可扩展性,以便未来支持其他协议解析,因此代码应模块化,例如将解析部分单独成函数,便于扩展。 因此,总结解决方案为:遍历输入字符串,提取连续的数字部分作为整数,按顺序存入buffer,直到收集到六个整数。减号作为分隔符,但具体处理方式取决于格式要求。如果格式严格要求前三后三,则需分割字符串并分别解析。</think>### 自定义字符串解析器实现方法 要实现类似`sscanf`的字符串解析功能,用于解析`%d%d%d-%d%d%d`格式并将六个整数存入数组`buffer[6]`,可以按照以下步骤实现: #### 步骤1:设计解析逻辑 1. **状态跟踪**:使用状态标志区分数字解析和分隔符处理 2. **字符遍历**:逐个处理USART缓冲区字符 3. **数字累积**:遇到数字字符时构建整数值 4. **分隔符检测**:遇到`-`时验证格式正确性 5. **数据存储**:将解析结果存入目标数组 ```c #include <ctype.h> #include <stdint.h> int custom_parser(const char* input, int* buffer) { uint8_t state = 0; // 0-正在解析数字 1-遇到分隔符 uint8_t count = 0; int current_value = 0; for (const char* p = input; *p && count < 6; ++p) { if (isdigit(*p)) { current_value = current_value * 10 + (*p - '0'); state = 0; } else { if (*p == '-' && count == 3) { state = 1; buffer[count++] = current_value; current_value = 0; } else { // 无效字符处理 return -1; } } if (state == 0 && !isdigit(*(p+1))) { buffer[count++] = current_value; current_value = 0; } } return (count == 6) ? 0 : -1; } ``` #### 步骤2:使用示例 ```c // USART数据缓冲区示例 char usart_read_buffer[] = "123456-789012"; int main() { int buffer[6] = {0}; if (custom_parser(usart_read_buffer, buffer) == 0) { printf("解析结果:"); for (int i = 0; i < 6; ++i) { printf("%d ", buffer[i]); } } return 0; } ``` #### 步骤3:扩展性设计建议 1. **协议抽象**:使用函数指针实现不同协议的解析器[^4] 2. **状态机封装**:将解析状态封装为结构体 3. **错误代码定义**:建立完整的错误代码体系 ```c typedef struct { uint8_t state; int (*handler)(char, int*); } ParserState; int handle_digit(char c, int* val) { if (isdigit(c)) { *val = *val * 10 + (c - '0'); return 0; } return -1; } ```
阅读全文

相关推荐

#include "control.h" #include "Lidar.h" float Move_X = 0, Move_Z = 0; // Ä¿±êËٶȺÍÄ¿±êתÏòËÙ¶È float PWM_Left, PWM_Right; // ×óÓÒµç»úPWMÖµ float RC_Velocity, RC_Turn_Velocity; // Ò£¿Ø¿ØÖƵÄËÙ¶È u8 Mode = Normal_Mode; // ģʽѡÔñ£¬Ä¬ÈÏÊÇÆÕͨµÄ¿ØÖÆÄ£Ê½ Motor_parameter MotorA, MotorB; // ×óÓÒµç»úÏà¹Ø±äÁ¿ int Servo_PWM = SERVO_INIT; // °¢¿ËÂü¶æ»úÏà¹Ø±äÁ¿ u8 Lidar_Detect = Lidar_Detect_ON; // µç´ÅѲÏßģʽÀ×´ï¼ì²âÕϰ­ÎĬÈÏ¿ªÆô float CCD_Move_X = 0.3; // CCDѲÏßËÙ¶È float ELE_Move_X = 0.3; // µç´ÅѲÏßËÙ¶È u8 Ros_count = 0, Lidar_flag_count = 0; u8 cnt = 0; Encoder OriginalEncoder; // Encoder raw data //±àÂëÆ÷ԭʼÊý¾Ý short Accel_Y, Accel_Z, Accel_X, Accel_Angle_x, Accel_Angle_y, Gyro_X, Gyro_Z, Gyro_Y; int forward_cnt = 800; int left_cnt = 120; int right_cnt = 125; int stop_cnt = 200; int stop_flag = 0; int mode_cnt = 0; int state_cnt = 0; int stop_protect = 0; /************************************************************************** Function: Control Function Input : none Output : none º¯Êý¹¦ÄÜ£º5ms¶¨Ê±ÖжϿØÖƺ¯Êý Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void forward(){ MotorA.Motor_Pwm = 1999; MotorB.Motor_Pwm = 2040; } void left(){ MotorA.Motor_Pwm = 0; MotorB.Motor_Pwm = 2050; } void right(){ MotorA.Motor_Pwm = 1999; MotorB.Motor_Pwm = 0; } void stop(){ MotorA.Motor_Pwm = 0; MotorB.Motor_Pwm = 0; } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim == &htim5) { Get_KeyVal(); if(mode_cnt == 0) stop(); //ģʽһ if(mode_cnt == 1){ if(forward_cnt > 0){ forward(); forward_cnt--; // if(left_cnt > 0){ // left(); // left_cnt--; // if(right_cnt > 0){ // right(); // right_cnt--; } else{ stop(); } } //ģʽ¶þ else if(mode_cnt == 2){ if(forward_cnt > 0){ forward(); forward_cnt--; } else if(stop_cnt > 0 && forward_cnt == 0){ stop(); stop_cnt--; } else if(stop_cnt == 0 && stop_flag == 0){ forward_cnt = 800; stop_flag = 1; } else{ stop(); } } //ģʽÈý else if(mode_cnt == 3){ if(forward_cnt > 0 && state_cnt == 0){//µÚ1״̬£ºÖ±ÐÐ forward(); forward_cnt--; } else if(right_cnt > 0 && state_cnt == 1){//µÚ2״̬£ºÓÒת right(); right_cnt--; } else if(forward_cnt > 0 && state_cnt == 2){//µÚ3״̬£ºÖ±ÐÐ forward(); forward_cnt--; } else if(left_cnt > 0 && state_cnt == 3){//µÚ4״̬£º×óת left(); left_cnt--; } else if(forward_cnt > 0 && state_cnt == 4){//µÚ5״̬£ºÖ±ÐÐ forward(); forward_cnt--; } else if(left_cnt > 0 && state_cnt == 5){//µÚ6״̬£º×óת left(); left_cnt--; } else if(forward_cnt > 0 && state_cnt == 6){//µÚ7״̬£ºÖ±ÐÐ forward(); forward_cnt--; } else{ if(stop_protect == 0 && stop_cnt == 0){ stop_cnt = 100; stop_protect = 1; } else if(stop_cnt > 0){ stop(); stop_cnt--; } else if(stop_protect == 1 && stop_cnt == 0){ stop_protect = 0; if(state_cnt == 0){//״̬1Çл»×´Ì¬2 state_cnt++; right_cnt = 125; } else if(state_cnt == 1){//״̬2Çл»×´Ì¬3 state_cnt++; forward_cnt = 585; } else if(state_cnt == 2){//״̬3Çл»×´Ì¬4 state_cnt++; left_cnt = 120; } else if(state_cnt == 3){//״̬4Çл»×´Ì¬5 state_cnt++; forward_cnt = 585; } else if(state_cnt == 4){//״̬5Çл»×´Ì¬6 state_cnt++; left_cnt = 120; } else if(state_cnt == 5){//״̬6Çл»×´Ì¬7 state_cnt++; forward_cnt = 585; } } } } Set_Pwm(-MotorA.Motor_Pwm, MotorB.Motor_Pwm); // Çý¶¯µç»ú } } /************************************************************************** Function: Bluetooth_Control Input : none Output : none º¯Êý¹¦ÄÜ£ºÊÖ»úÀ¶ÑÀ¿ØÖÆ Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Bluetooth_Control(void) { if (Flag_Direction == 0) Move_X = 0, Move_Z = 0; // Í£Ö¹ else if (Flag_Direction == 1) Move_X = RC_Velocity, Move_Z = 0; // ǰ½ø else if (Flag_Direction == 2) Move_X = RC_Velocity, Move_Z = Pi / 2; // ÓÒǰ else if (Flag_Direction == 3) Move_X = 0, Move_Z = Pi / 2; // ÏòÓÒ else if (Flag_Direction == 4) Move_X = -RC_Velocity, Move_Z = Pi / 2; // ÓÒºó else if (Flag_Direction == 5) Move_X = -RC_Velocity, Move_Z = 0; // ºóÍË else if (Flag_Direction == 6) Move_X = -RC_Velocity, Move_Z = -Pi / 2; // ×óºó else if (Flag_Direction == 7) Move_X = 0, Move_Z = -Pi / 2; // Ïò×ó else if (Flag_Direction == 8) Move_X = RC_Velocity, Move_Z = -Pi / 2; // ×óǰ else Move_X = 0, Move_Z = 0; if (Car_Num == Akm_Car) { // Ackermann structure car is converted to the front wheel steering Angle system target value, and kinematics analysis is pearformed // °¢¿ËÂü½á¹¹Ð¡³µ×ª»»ÎªÇ°ÂÖתÏò½Ç¶È Move_Z = Move_Z * 2 / 10; } Move_X = Move_X / 1000; Move_Z = -Move_Z; // ת»»ÎªËÙ¶ÈתΪm/s } /************************************************************************** Function: PS2_Control Input : none Output : none º¯Êý¹¦ÄÜ£ºPS2ÊÖ±ú¿ØÖÆ Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void PS2_Control(void) { int LY, RX; // ÊÖ±úADCµÄÖµ int Threshold = 20; // ãÐÖµ£¬ºöÂÔÒ¡¸ËС·ù¶È¶¯×÷ static u8 Key1_Count = 0, Key2_Count = 0; // ÓÃÓÚ¿ØÖƶÁȡҡ¸ËµÄËÙ¶È // ת»¯Îª128µ½-128µÄÊýÖµ LY = -(PS2_LY - 128); // ×ó±ßYÖá¿ØÖÆÇ°½øºóÍË RX = -(PS2_RX - 128); // ÓÒ±ßXÖá¿ØÖÆ×ªÏò if (LY > -Threshold && LY < Threshold) LY = 0; if (RX > -Threshold && RX < Threshold) RX = 0; // ºöÂÔÒ¡¸ËС·ù¶È¶¯×÷ Move_X = (RC_Velocity / 128) * LY; // ËÙ¶È¿ØÖÆ£¬Á¦¶È±íʾËÙ¶È´óС if (Car_Num == Akm_Car) // °¢¿ËÂü³µ×ªÏò¿ØÖÆ£¬Á¦¶È±íʾתÏò½Ç¶È Move_Z = -(RC_Turn_Velocity / 128) * RX; else // ÆäËû³µÐÍתÏò¿ØÖÆ { if (Move_X >= 0) Move_Z = -(RC_Turn_Velocity / 128) * RX; // תÏò¿ØÖÆ£¬Á¦¶È±íʾתÏòËÙ¶È else Move_Z = (RC_Turn_Velocity / 128) * RX; } if (PS2_KEY == PSB_L1) // °´ÏÂ×ó1¼ü¼ÓËÙ£¨°´¼üÔÚ¶¥ÉÏ£© { if ((++Key1_Count) == 20) // µ÷½Ú°´¼ü·´Ó¦ËÙ¶È { PS2_KEY = 0; Key1_Count = 0; if ((RC_Velocity += X_Step) > MAX_RC_Velocity) // ǰ½ø×î´óËÙ¶È800mm/s RC_Velocity = MAX_RC_Velocity; if (Car_Num != Akm_Car) // ·Ç°¢¿ËÂü³µ¿Éµ÷½ÚתÏòËÙ¶È { if ((RC_Turn_Velocity += Z_Step) > MAX_RC_Turn_Bias) // תÏò×î´óËÙ¶È325 RC_Turn_Velocity = MAX_RC_Turn_Bias; } } } else if (PS2_KEY == PSB_R1) // °´ÏÂÓÒ1¼ü¼õËÙ { if ((++Key2_Count) == 20) { PS2_KEY = 0; Key2_Count = 0; if ((RC_Velocity -= X_Step) < MINI_RC_Velocity) // ǰºó×îСËÙ¶È210mm/s RC_Velocity = MINI_RC_Velocity; if (Car_Num != Akm_Car) // ·Ç°¢¿ËÂü³µ¿Éµ÷½ÚתÏòËÙ¶È { if ((RC_Turn_Velocity -= Z_Step) < MINI_RC_Turn_Velocity) // תÏò×îСËÙ¶È45 RC_Turn_Velocity = MINI_RC_Turn_Velocity; } } } else Key2_Count = 0, Key2_Count = 0; // ¶ÁÈ¡µ½ÆäËû°´¼üÖØÐ¼ÆÊý Move_X = Move_X / 1000; Move_Z = -Move_Z; // ËÙ¶ÈMove_XתΪm/s } /************************************************************************** Function: Get_Velocity_From_Encoder Input : none Output : none º¯Êý¹¦ÄÜ£º¶ÁÈ¡±àÂëÆ÷ºÍת»»³ÉËÙ¶È Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Get_Velocity_From_Encoder(void) { // Retrieves the original data of the encoder // »ñÈ¡±àÂëÆ÷µÄԭʼÊý¾Ý float Encoder_A_pr, Encoder_B_pr; OriginalEncoder.A = Read_Encoder(Encoder1); OriginalEncoder.B = Read_Encoder(Encoder2); // Decide the encoder numerical polarity according to different car models // ¸ù¾Ý²»Í¬Ð¡³µÐͺžö¶¨±àÂëÆ÷ÊýÖµ¼«ÐÔ switch (Car_Num) { case Akm_Car: Encoder_A_pr = OriginalEncoder.A; Encoder_B_pr = -OriginalEncoder.B; break; case Diff_Car: Encoder_A_pr = OriginalEncoder.A; Encoder_B_pr = -OriginalEncoder.B; break; case Small_Tank_Car: Encoder_A_pr = OriginalEncoder.A; Encoder_B_pr = -OriginalEncoder.B; break; case Big_Tank_Car: Encoder_A_pr = OriginalEncoder.A; Encoder_B_pr = -OriginalEncoder.B; break; } // The encoder converts the raw data to wheel speed in m/s // ±àÂëÆ÷ԭʼÊý¾Ýת»»Îª³µÂÖËÙ¶È£¬µ¥Î»m/s MotorA.Current_Encoder = Encoder_A_pr * Frequency * Perimeter / 60000.0f; // 60000 = 4*500*30 MotorB.Current_Encoder = Encoder_B_pr * Frequency * Perimeter / 60000.0f; // 1560=4*13*30=2£¨Á½Â·Âö³å£©*2£¨ÉÏÏÂÑØ¼ÆÊý£©*»ô¶û±àÂëÆ÷13Ïß*µç»úµÄ¼õËÙ±È // MotorA.Current_Encoder= Encoder_A_pr*CONTROL_FREQUENCY*Akm_wheelspacing//(4*13*30); // MotorB.Current_Encoder= Encoder_B_pr*CONTROL_FREQUENCY*Akm_wheelspacing/Encoder_precision; } /************************************************************************** Function: Drive_Motor Input : none Output : none º¯Êý¹¦ÄÜ£ºÔ˶¯Ñ§Äæ½â Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ // Ô˶¯Ñ§Äæ½â£¬ÓÉxºÍyµÄËٶȵõ½±àÂëÆ÷µÄËÙ¶È,VxÊÇm/s,Vzµ¥Î»ÊǶÈ/s(½Ç¶ÈÖÆ) // °¢¿ËÂü³µVzÊǶæ»úתÏòµÄ½Ç¶È(»¡¶ÈÖÆ) void Get_Target_Encoder(float Vx, float Vz) { float MotorA_Velocity, MotorB_Velocity; float amplitude = 3.5f; // Wheel target speed limit //³µÂÖÄ¿±êËÙ¶ÈÏÞ·ù Move_X = target_limit_float(Move_X, -1.2, 1.2); Move_Z = target_limit_float(Move_Z, -Pi / 3, Pi / 3); if (Car_Num == Akm_Car) // °¢¿ËÂü³µ { // Ackerman car specific related variables //°¢¿ËÂüС³µ×¨ÓÃÏà¹Ø±äÁ¿ float R, ratio = 636.56, AngleR, Angle_Servo; // For Ackerman small car, Vz represents the front wheel steering Angle // ¶ÔÓÚ°¢¿ËÂüС³µVz´ú±íÓÒǰÂÖתÏò½Ç¶È AngleR = Vz; R = Akm_axlespacing / tan(AngleR) - 0.5f * Wheelspacing; // Front wheel steering Angle limit (front wheel steering Angle controlled by steering engine), unit: rad // ǰÂÖתÏò½Ç¶ÈÏÞ·ù(¶æ»ú¿ØÖÆÇ°ÂÖתÏò½Ç¶È)£¬µ¥Î»£ºrad AngleR = target_limit_float(AngleR, -0.49f, 0.32f); // Inverse kinematics //Ô˶¯Ñ§Äæ½â if (AngleR != 0) { MotorA.Target_Encoder = Vx * (R - 0.081f) / R; MotorB.Target_Encoder = Vx * (R + 0.081f) / R; } else { MotorA.Target_Encoder = Vx; MotorB.Target_Encoder = Vx; } // The PWM value of the servo controls the steering Angle of the front wheel // ¶æ»úPWMÖµ£¬¶æ»ú¿ØÖÆÇ°ÂÖתÏò½Ç¶È Angle_Servo = -0.628f * pow(AngleR, 3) + 1.269f * pow(AngleR, 2) - 1.772f * AngleR + 1.573f; Servo_PWM = SERVO_INIT + (Angle_Servo - 1.572f) * ratio; // printf("%d\r\n",Servo_PWM); // Wheel (motor) target speed limit //³µÂÖ(µç»ú)Ä¿±êËÙ¶ÈÏÞ·ù MotorA.Target_Encoder = target_limit_float(MotorA.Target_Encoder, -amplitude, amplitude); MotorB.Target_Encoder = target_limit_float(MotorB.Target_Encoder, -amplitude, amplitude); Servo_PWM = target_limit_int(Servo_PWM, 800, 2200); // Servo PWM value limit //¶æ»úPWMÖµÏÞ·ù } else if (Car_Num == Diff_Car) // ²îËÙС³µ { if (Vx < 0) Vz = -Vz; else Vz = Vz; // Inverse kinematics //Ô˶¯Ñ§Äæ½â MotorA.Target_Encoder = Vx - Vz * Wheelspacing / 2.0f; // ¼ÆËã³ö×óÂÖµÄÄ¿±êËÙ¶È MotorB.Target_Encoder = Vx + Vz * Wheelspacing / 2.0f; // ¼ÆËã³öÓÒÂÖµÄÄ¿±êËÙ¶È // Wheel (motor) target speed limit //³µÂÖ(µç»ú)Ä¿±êËÙ¶ÈÏÞ·ù MotorA.Target_Encoder = target_limit_float(MotorA.Target_Encoder, -amplitude, amplitude); MotorB.Target_Encoder = target_limit_float(MotorB.Target_Encoder, -amplitude, amplitude); } else if (Car_Num == Small_Tank_Car) { if (Vx < 0) Vz = -Vz; else Vz = Vz; MotorA.Target_Encoder = Vx - Vz * Wheelspacing / 2.0f; // ¼ÆËã³ö×óÂÖµÄÄ¿±êËÙ¶È MotorB.Target_Encoder = Vx + Vz * Wheelspacing / 2.0f; // ¼ÆËã³öÓÒÂÖµÄÄ¿±êËÙ¶È // Wheel (motor) target speed limit //³µÂÖ(µç»ú)Ä¿±êËÙ¶ÈÏÞ·ù MotorA.Target_Encoder = target_limit_float(MotorA.Target_Encoder, -amplitude, amplitude); MotorB.Target_Encoder = target_limit_float(MotorB.Target_Encoder, -amplitude, amplitude); } else if (Car_Num == Big_Tank_Car) { if (Vx < 0) Vz = -Vz; else Vz = Vz; MotorA.Target_Encoder = Vx - Vz * Wheelspacing / 2.0f; // ¼ÆËã³ö×óÂÖµÄÄ¿±êËÙ¶È MotorB.Target_Encoder = Vx + Vz * Wheelspacing / 2.0f; // ¼ÆËã³öÓÒÂÖµÄÄ¿±êËÙ¶È MotorA.Target_Encoder = target_limit_float(MotorA.Target_Encoder, -amplitude, amplitude); MotorB.Target_Encoder = target_limit_float(MotorB.Target_Encoder, -amplitude, amplitude); } } /************************************************************************** Function: Get_Motor_PWM Input : none Output : none º¯Êý¹¦ÄÜ£º×ª»»³ÉÇý¶¯µç»úµÄPWM Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Get_Motor_PWM(void) { // ¼ÆËã×óÓÒµç»ú¶ÔÓ¦µÄPWM MotorA.Motor_Pwm = Incremental_PI_Left(MotorA.Current_Encoder, MotorA.Target_Encoder); MotorB.Motor_Pwm = Incremental_PI_Right(MotorB.Current_Encoder, MotorB.Target_Encoder); if (Mode == Normal_Mode || Mode == Measure_Distance_Mode) { // Â˲¨£¬Ê¹Æð²½ºÍÍ£Ö¹ÉÔ΢ƽ»¬Ò»Ð© MotorA.Motor_Pwm = Mean_Filter_Left(MotorA.Motor_Pwm); MotorB.Motor_Pwm = Mean_Filter_Right(MotorB.Motor_Pwm); } // ÏÞ·ù MotorA.Motor_Pwm = PWM_Limit(MotorA.Motor_Pwm, PWM_MAX, PWM_MIN); MotorB.Motor_Pwm = PWM_Limit(MotorB.Motor_Pwm, PWM_MAX, PWM_MIN); } /************************************************************************** Function: PWM_Limit Input : IN;max;min Output : OUT º¯Êý¹¦ÄÜ£ºÏÞÖÆPWM¸³Öµ Èë¿Ú²ÎÊý: IN£ºÊäÈë²ÎÊý max£ºÏÞ·ù×î´óÖµ min£ºÏÞ·ù×îСֵ ·µ»Ø Öµ£ºÏÞ·ùºóµÄÖµ **************************************************************************/ float PWM_Limit(float IN, int max, int min) { float OUT = IN; if (OUT > max) OUT = max; if (OUT < min) OUT = min; return OUT; } /************************************************************************** Function: Limiting function Input : Value Output : none º¯Êý¹¦ÄÜ£ºÏÞ·ùº¯Êý Èë¿Ú²ÎÊý£º·ùÖµ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ float target_limit_float(float insert, float low, float high) { if (insert < low) return low; else if (insert > high) return high; else return insert; } int target_limit_int(int insert, int low, int high) { if (insert < low) return low; else if (insert > high) return high; else return insert; } /************************************************************************** Function: Check whether it is abnormal Input : none Output : 1:Abnormal;0:Normal º¯Êý¹¦ÄÜ£ºÒì³£¹Ø±Õµç»ú Èë¿Ú²ÎÊý: ÎÞ ·µ»Ø Öµ£º1£ºÒì³£ 0£ºÕý³£ **************************************************************************/ u8 Turn_Off(void) { u8 temp = Normal; Flag_Stop = KEY2_STATE; // ¶ÁÈ¡°´¼ü2״̬£¬°´¼ü2¿ØÖƵç»úµÄ¿ª¹Ø if (Voltage < 1000) // µç³ØµçѹµÍÓÚ10V¹Ø±Õµç»ú,LEDµÆ¿ìËÙÉÁ˸ LED_Flash(50), temp = Abnormal; else LED_Flash(200); // ÿһÃëÉÁÒ»´Î£¬Õý³£ÔËÐÐ if (Flag_Stop) temp = Abnormal; return temp; } /************************************************************************** Function: Data sliding filtering Input : data Output : Filtered data º¯Êý¹¦ÄÜ£ºÊý¾Ý»¬¶¯Â˲¨ Èë¿Ú²ÎÊý£ºÊý¾Ý ·µ»Ø Öµ£ºÂ˲¨ºóµÄÊý¾Ý **************************************************************************/ float Mean_Filter_Left(float data) { u8 i; float Sum_Data = 0; float Filter_Data; static float Speed_Buf[FILTERING_TIMES] = {0}; for (i = 1; i < FILTERING_TIMES; i++) { Speed_Buf[i - 1] = Speed_Buf[i]; } Speed_Buf[FILTERING_TIMES - 1] = data; for (i = 0; i < FILTERING_TIMES; i++) { Sum_Data += Speed_Buf[i]; } Filter_Data = (s32)(Sum_Data / FILTERING_TIMES); return Filter_Data; } /************************************************************************** Function: Data sliding filtering Input : data Output : Filtered data º¯Êý¹¦ÄÜ£ºÊý¾Ý»¬¶¯Â˲¨ Èë¿Ú²ÎÊý£ºÊý¾Ý ·µ»Ø Öµ£ºÂ˲¨ºóµÄÊý¾Ý **************************************************************************/ float Mean_Filter_Right(float data) { u8 i; float Sum_Data = 0; float Filter_Data; static float Speed_Buf[FILTERING_TIMES] = {0}; for (i = 1; i < FILTERING_TIMES; i++) { Speed_Buf[i - 1] = Speed_Buf[i]; } Speed_Buf[FILTERING_TIMES - 1] = data; for (i = 0; i < FILTERING_TIMES; i++) { Sum_Data += Speed_Buf[i]; } Filter_Data = (s32)(Sum_Data / FILTERING_TIMES); return Filter_Data; } /************************************************************************** Function: Lidar_Avoid Input : none Output : none º¯Êý¹¦ÄÜ£ºÀ×´ï±ÜÕÏģʽ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Lidar_Avoid(void) { int i = 0; u8 calculation_angle_cnt = 0; // ÓÃÓÚÅжÏ100¸öµãÖÐÐèÒª×ö±ÜÕϵĵã float angle_sum = 0; // ´ÖÂÔ¼ÆËãÕϰ­ÎïλÓÚ×ó»òÕßÓÒ u8 distance_count = 0; // ¾àÀëСÓÚijֵµÄ¼ÆÊý int distance = 350; // É趨±ÜÕϾàÀë,ĬÈÏÊÇ300 if (Car_Num == Akm_Car) distance = 400; // °¢¿ËÂü³µÉ趨ÊÇ400mm else if (Car_Num == Big_Tank_Car) distance = 500; // ´óÂÄ´ø³µÉ趨ÊÇ500mm for (i = 0; i < lap_count; i++) { if ((Dataprocess[i].angle > 310) || (Dataprocess[i].angle < 50)) { if ((0 < Dataprocess[i].distance) && (Dataprocess[i].distance < distance)) // ¾àÀëСÓÚ350mmÐèÒª±ÜÕÏ,Ö»ÐèÒª100¶È·¶Î§ÄÚµã { calculation_angle_cnt++; // ¼ÆËã¾àÀëСÓÚ±ÜÕϾàÀëµÄµã¸öÊý if (Dataprocess[i].angle < 50) angle_sum += Dataprocess[i].angle; else if (Dataprocess[i].angle > 310) angle_sum += (Dataprocess[i].angle - 360); // 310¶Èµ½50¶Èת»¯Îª-50¶Èµ½50¶È if (Dataprocess[i].distance < 200) // ¼Ç¼СÓÚ200mmµÄµãµÄ¼ÆÊý distance_count++; } } } if (calculation_angle_cnt < 8) // СÓÚ8µã²»ÐèÒª±ÜÕÏ£¬È¥³ýһЩÔëµã { if ((Move_X += 0.1) >= Aovid_Speed) // ±ÜÕϵÄËÙ¶ÈÉ趨Ϊ260£¬Öð½¥Ôö¼Óµ½260¿ÉÉÔ΢ƽ»¬Ò»Ð© Move_X = Aovid_Speed; Move_Z = 0; // ²»±ÜÕÏʱ²»ÐèҪתÍä } else // ÐèÒª±ÜÕÏ£¬¼òµ¥µØÅжÏÕϰ­Î﷽λ { if (Car_Num == Akm_Car) // °¢¿ËÂü³µÐÍÓжæ»ú£¬ÐèÒªÌØÊâ´¦Àí { if (distance_count > 8) // ¾àÀëСÓÚ±ÜÕ½¾àÀë Move_X = -Aovid_Speed, Move_Z = 0; // ÍùºóÍË else { if ((Move_X -= 0.1) <= (Aovid_Speed * 0.5)) // ±ÜÕÏʱËٶȽµµ½µÍËÙ0.25 Move_X = Aovid_Speed * 0.5; if (angle_sum > 0) // Õϰ­ÎïÆ«ÓÒ Move_Z = -Pi / 5; // ÿ´ÎתÍä½Ç¶ÈΪPI/5£¬Ö±µ½100¶È·¶Î§ÄÚÎÞÕϰ­Îï¾ÍÍ£Ö¹ else // Æ«×ó Move_Z = Pi / 5; } } else { if (distance_count > 8) // СÓÚ±ÜÕ½¾àÀëµÄʱºò Move_X = -Aovid_Speed, Move_Z = 0; // ÍùºóÍË else { if ((Move_X -= 0.1) <= (Aovid_Speed * 0.5)) // ±ÜÕÏʱËٶȽµµ½µÍËÙ¶È0.15 Move_X = (Aovid_Speed * 0.5); if (angle_sum > 0) // Õϰ­ÎïÆ«ÓÒ { if (Car_Num == Diff_Car) // ÿ´ÎתÍäËÙ¶ÈΪX¶È£¬Ö±µ½100¶È·¶Î§ÄÚÎÞÕϰ­Îï¾ÍÍ£Ö¹ Move_Z = -1; else if (Car_Num == Small_Tank_Car) Move_Z = -1; else Move_Z = -1; } else // Æ«×ó { if (Car_Num == Diff_Car) // ÿ´ÎתÍäËÙ¶ÈΪX¶È£¬Ö±µ½100¶È·¶Î§ÄÚÎÞÕϰ­Îï¾ÍÍ£Ö¹ Move_Z = 1; else if (Car_Num == Small_Tank_Car) Move_Z = 1; else Move_Z = 1; } } } } Move_Z = -Move_Z; } /************************************************************************** Function: Lidar_Follow Input : none Output : none º¯Êý¹¦ÄÜ£ºÀ×´ï¸úËæÄ£Ê½ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ float angle1 = 0; // ¸úËæµÄ½Ç¶È u16 mini_distance1; void Lidar_Follow(void) { static u16 cnt = 0; int i; int calculation_angle_cnt = 0; static float angle = 0; // ¸úËæµÄ½Ç¶È static float last_angle = 0; // u16 mini_distance = 65535; static u8 data_count = 0; // ÓÃÓÚÂ˳ýһдÔëµãµÄ¼ÆÊý±äÁ¿ // ÐèÒªÕÒ³ö¸úËæµÄÄǸöµãµÄ½Ç¶È for (i = 0; i < lap_count; i++) { if (100 < Dataprocess[i].distance && Dataprocess[i].distance < Follow_Distance) // 1200·¶Î§ÄÚ¾ÍÐèÒª¸úËæ { calculation_angle_cnt++; if (Dataprocess[i].distance < mini_distance) // ÕÒ³ö¾àÀë×îСµÄµã { mini_distance = Dataprocess[i].distance; angle = Dataprocess[i].angle; } } } if (angle > 180) angle -= 360; // 0--360¶Èת»»³É0--180£»-180--0£¨Ë³Ê±Õ룩 if (angle - last_angle > 10 || angle - last_angle < -10) // ×öÒ»¶¨Ïû¶¶£¬²¨¶¯´óÓÚ10¶ÈµÄÐèÒª×öÅÐ¶Ï { if (++data_count == 60) // Á¬Ðø60´Î²É¼¯µ½µÄÖµ(300msºó)ºÍÉϴεıȴóÓÚ10¶È£¬´Ëʱ²ÅÊÇÈÏΪÊÇÓÐЧֵ { data_count = 0; last_angle = angle; } } else // ²¨¶¯Ð¡ÓÚ10¶ÈµÄ¿ÉÒÔÖ±½ÓÈÏΪÊÇÓÐЧֵ { data_count = 0; last_angle = angle; } if (calculation_angle_cnt < 6) // ÔÚ¸úËæ·¶Î§ÄڵĵãÉÙÓÚ6¸ö { if (cnt < 40) // Á¬Ðø¼ÆÊý³¬40´ÎûÓÐÒª¸úËæµÄµã£¬´Ëʱ²ÅÊDz»ÓøúËæ cnt++; if (cnt >= 40) { Move_X = 0; // ËÙ¶ÈΪ0 Move_Z = 0; } } else { cnt = 0; if (Car_Num == Akm_Car) { if ((((angle > 15) && (angle < 180)) || ((angle > -180) && angle < -15)) && (mini_distance < 500)) // °¢¿¨Âü³µÐÍ´¦Àí³µÍ·²»¶ÔןúËæÎÏ൱ÓÚºó³µÒ»Ñù£¬Ò»´Î²»¶Ô×¼£¬ÄǺóÍËÔÙÀ´¶Ô×¼ { Move_X = -0.20; Move_Z = -Follow_Turn_PID(last_angle, 0); } else { Move_X = Distance_Adjust_PID(mini_distance, Keep_Follow_Distance); // ±£³Ö¾àÀë±£³ÖÔÚ400mm Move_Z = Follow_Turn_PID(last_angle, 0); } } else // ÆäÓà³µÐÍ { if ((angle > 50 || angle < -50) && (mini_distance > 400)) { Move_Z = -0.0298f * last_angle; // ½Ç¶È²î¾à¹ý´óÖ±½Ó¿ìËÙתÏò Move_X = 0; // ²îËÙС³µºÍÂÄ´øÐ¡³µ¿ÉÒÔʵÏÖÔ­µØ×ª¶¯ } else { Move_X = Distance_Adjust_PID(mini_distance, Keep_Follow_Distance); // ±£³Ö¾àÀë±£³ÖÔÚ400mm Move_Z = Follow_Turn_PID(last_angle, 0); // תÏòPID£¬³µÍ·ÓÀÔ¶¶ÔןúËæÎïÆ· } } } Move_Z = target_limit_float(Move_Z, -Pi / 6, Pi / 6); // ÏÞ·ù Move_X = target_limit_float(Move_X, -0.6, 0.6); } /************************************************************************** º¯Êý¹¦ÄÜ£ºÐ¡³µ×ßÖ±Ïßģʽ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Lidar_along_wall(void) { static u32 target_distance = 0; static int n = 0; u32 distance; u8 data_count = 0; // ÓÃÓÚÂ˳ýһдÔëµãµÄ¼ÆÊý±äÁ¿ for (int i = 0; i < lap_count; i++) { if (Dataprocess[i].angle > 75 && Dataprocess[i].angle < 77) { if (n == 0) { target_distance = Dataprocess[i].distance; // »ñÈ¡µÄµÚÒ»¸öµã×÷ΪĿ±ê¾àÀë n++; } if (Dataprocess[i].distance < target_distance + 100) //+100ÏÞÖÆ»ñÈ¡¾àÀëµÄ·¶Î§Öµ { distance = Dataprocess[i].distance; // »ñȡʵʱ¾àÀë data_count++; } } } // if(data_count <= 0) // Move_X = 0; // Move_X = forward_velocity; // ³õʼËÙ¶È Move_Z = -Along_Adjust_PID(distance, target_distance); if (Car_Num == Akm_Car) { Move_Z = target_limit_float(Move_Z, -Pi / 4, Pi / 4); // ÏÞ·ù } else if (Car_Num == Diff_Car) Move_Z = target_limit_float(Move_Z, -Pi / 5, Pi / 5); // ÏÞ·ù } /************************************************************************** Function: Car_Perimeter_Init Input : none Output : none º¯Êý¹¦ÄÜ£º¼ÆËãС³µ¸÷ÂÖ×ÓµÄÖܳ¤ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Car_Perimeter_Init(void) { if (Car_Num == Diff_Car || Car_Num == Akm_Car) { Perimeter = Diff_Car_Wheel_diameter * Pi; Wheelspacing = Diff_wheelspacing; } else if (Car_Num == Small_Tank_Car) { Perimeter = Small_Tank_WheelDiameter * Pi; Wheelspacing = Small_Tank_wheelspacing; } else { Perimeter = Big_Tank_WheelDiameter * Pi; Wheelspacing = Big_Tank_wheelspacing; } } /************************************************************************** Function: Ultrasonic_Follow Input : none Output : none º¯Êý¹¦ÄÜ£º³¬Éù²¨¸úËæÄ£Ê½ Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Ultrasonic_Follow(void) // ³¬Éù²¨¸úËæ£¬Ö»Äܵ¥·½Ïò¸úËæ { Move_Z = 0; Read_Distane(); // ¶ÁÈ¡³¬Éù²¨µÄ¾àÀë if (Distance1 < 200) // ¾àÀëСÓÚ200mm£¬Í˺ó { if ((Move_X -= 3) < -210) Move_X = -210; // ¸øÒ»210ºóÍËËÙ¶È } else if (Distance1 > 270 && Distance1 < 750) // ¾àÀëÔÚ270µ½750Ö®¼äÊÇÐèÒª¸úËæÇ°½ø { if ((Move_X += 3) > 210) // ËÙ¶ÈÖð½¥Ôö¼Ó£¬¸øÇ°½øËÙ¶È Move_X = 210; } else { if (Move_X > 0) { if ((Move_X -= 20) < 0) // ËÙ¶ÈÖð½¥¼õµ½0 Move_X = 0; } else { if ((Move_X += 20) > 0) // ËÙ¶ÈÖð½¥¼õµ½0 Move_X = 0; } } } /************************************************************************** Function: Get angle Input : way£ºThe algorithm of getting angle 1£ºDMP 2£ºkalman 3£ºComplementary filtering Output : none º¯Êý¹¦ÄÜ£º»ñÈ¡½Ç¶È Èë¿Ú²ÎÊý£ºway£º»ñÈ¡½Ç¶ÈµÄËã·¨ 1£ºDMP 2£º¿¨¶ûÂü 3£º»¥²¹Â˲¨ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Get_Angle(u8 way) { if (way == 1) // DMPµÄ¶ÁÈ¡ÔÚÊý¾Ý²É¼¯Öж϶ÁÈ¡£¬Ñϸñ×ñѭʱÐòÒªÇó { Read_DMP(); // ¶ÁÈ¡¼ÓËÙ¶È¡¢½ÇËÙ¶È¡¢Çã½Ç } else { Gyro_X = (I2C_ReadOneByte(devAddr, MPU6050_RA_GYRO_XOUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_GYRO_XOUT_L); // ¶ÁÈ¡XÖáÍÓÂÝÒÇ Gyro_Y = (I2C_ReadOneByte(devAddr, MPU6050_RA_GYRO_YOUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_GYRO_YOUT_L); // ¶ÁÈ¡YÖáÍÓÂÝÒÇ Gyro_Z = (I2C_ReadOneByte(devAddr, MPU6050_RA_GYRO_ZOUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_GYRO_ZOUT_L); // ¶ÁÈ¡ZÖáÍÓÂÝÒÇ Accel_X = (I2C_ReadOneByte(devAddr, MPU6050_RA_ACCEL_XOUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_ACCEL_XOUT_L); // ¶ÁÈ¡XÖá¼ÓËÙ¶È¼Æ Accel_Y = (I2C_ReadOneByte(devAddr, MPU6050_RA_ACCEL_YOUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_ACCEL_YOUT_L); // ¶ÁÈ¡XÖá¼ÓËÙ¶È¼Æ Accel_Z = (I2C_ReadOneByte(devAddr, MPU6050_RA_ACCEL_ZOUT_H) << 8) + I2C_ReadOneByte(devAddr, MPU6050_RA_ACCEL_ZOUT_L); // ¶ÁÈ¡ZÖá¼ÓËÙ¶È¼Æ // if(Gyro_X>32768) Gyro_X-=65536; //Êý¾ÝÀàÐÍת»» Ò²¿Éͨ¹ýshortÇ¿ÖÆÀàÐÍת»» // if(Gyro_Y>32768) Gyro_Y-=65536; //Êý¾ÝÀàÐÍת»» Ò²¿Éͨ¹ýshortÇ¿ÖÆÀàÐÍת»» // if(Gyro_Z>32768) Gyro_Z-=65536; //Êý¾ÝÀàÐÍת»» // if(Accel_X>32768) Accel_X-=65536; //Êý¾ÝÀàÐÍת»» // if(Accel_Y>32768) Accel_Y-=65536; //Êý¾ÝÀàÐÍת»» // if(Accel_Z>32768) Accel_Z-=65536; //Êý¾ÝÀàÐÍת»» Accel_Angle_x = atan2(Accel_Y, Accel_Z) * 180 / Pi; // ¼ÆËãÇã½Ç£¬×ª»»µ¥Î»Îª¶È Accel_Angle_y = atan2(Accel_X, Accel_Z) * 180 / Pi; // ¼ÆËãÇã½Ç£¬×ª»»µ¥Î»Îª¶È Gyro_X = Gyro_X / 65.5; // ÍÓÂÝÒÇÁ¿³Ìת»»£¬Á¿³Ì¡À500¡ã/s¶ÔÓ¦ÁéÃô¶È65.5£¬¿É²éÊÖ²á Gyro_Y = Gyro_Y / 65.5; // ÍÓÂÝÒÇÁ¿³Ìת»» if (way == 2) { Roll = -Kalman_Filter_x(Accel_Angle_x, Gyro_X); // ¿¨¶ûÂüÂ˲¨ Pitch = -Kalman_Filter_y(Accel_Angle_y, Gyro_Y); } else if (way == 3) { Roll = -Complementary_Filter_x(Accel_Angle_x, Gyro_X); // »¥²¹Â˲¨ Pitch = -Complementary_Filter_y(Accel_Angle_y, Gyro_Y); } } } /************************************************************************** Function: The remote control command of model aircraft is processed Input : none Output : none º¯Êý¹¦ÄÜ£º¶Ôº½Ä£Ò£¿Ø¿ØÖÆÃüÁî½øÐд¦Àí Èë¿Ú²ÎÊý£ºÎÞ ·µ»Ø Öµ£ºÎÞ **************************************************************************/ void Remote_Control(void) { // Data within 1 second after entering the model control mode will not be processed // ¶Ô½øÈ뺽ģ¿ØÖÆÄ£Ê½ºó1ÃëÄÚµÄÊý¾Ý²»´¦Àí static u8 thrice = 200; int Threshold = 100; // limiter //ÏÞ·ù int LX, RY; // static float Target_LX,Target_LY,Target_RY,Target_RX; Remoter_Ch1 = target_limit_int(Remoter_Ch1, 1000, 2000); Remoter_Ch2 = target_limit_int(Remoter_Ch2, 1000, 2000); // Front and back direction of left rocker. Control forward and backward. // ×óÒ¡¸Ëǰºó·½Ïò¡£¿ØÖÆÇ°½øºóÍË¡£ LX = Remoter_Ch2 - 1500; // //Left joystick left and right. Control left and right movement. // //×óÒ¡¸Ë×óÓÒ·½Ïò¡£¿ØÖÆ×óÓÒÒÆ¶¯¡£¡£ // LY=Remoter_Ch2-1500; // Right stick left and right. To control the rotation. // ÓÒÒ¡¸Ë×óÓÒ·½Ïò¡£¿ØÖÆ×Ôת¡£ RY = Remoter_Ch1 - 1500; // if (LX > -Threshold && LX < Threshold) LX = 0; if (RY > -Threshold && RY < Threshold) RY = 0; // if(LX==0) Target_LX=Target_LX/1.2f; // if(LY==0) Target_LY=Target_LY/1.2f; // if(RY==0) Target_RY=Target_RY/1.2f; // //Throttle related //ÓÍÃÅÏà¹Ø // Remote_RCvelocity=RC_Velocity+RX; // if(Remote_RCvelocity<0)Remote_RCvelocity=0; // The remote control command of model aircraft is processed // ¶Ôº½Ä£Ò£¿Ø¿ØÖÆÃüÁî½øÐд¦Àí Move_X = LX; Move_Z = -RY; Move_X = Move_X * 1.3; //*1.3ÊÇΪÁËÀ«´óËÙ¶È if (Car_Num == Akm_Car) Move_Z = Move_Z * (Pi / 8) / 350.0; else Move_Z = Move_Z * 2 * (Pi / 4) / 350.0; // Unit conversion, mm/s -> m/s // µ¥Î»×ª»»£¬mm/s -> m/s Move_X = Move_X / 1000; // ZÖáÊý¾Ýת»¯ #if _4WD if (Move_X < 0) Move_Z = -Move_Z; #endif // Data within 1 second after entering the model control mode will not be processed // ¶Ô½øÈ뺽ģ¿ØÖÆÄ£Ê½ºó1ÃëÄÚµÄÊý¾Ý²»´¦Àí if (thrice > 0) Move_X = 0, Move_Z = 0, thrice--; // Control target value is obtained and kinematics analysis is performed // µÃµ½¿ØÖÆÄ¿±êÖµ£¬½øÐÐÔ˶¯Ñ§·ÖÎö // Get_Target_Encoder(Move_X,Move_Z); } 怎么把OpenMV与STM32串口通信实现二维码/APRILTag码识别及控制的代码加到上述代码中,现在openmv的二维码识别已做好,二维码采用的是Apriltag的36h11类型,id:0表示停止,id:1表示直行,id:2表示左转,id:3表示右转,现在需要再在STM32中修改或添加代码,使其能在接收到openmv识别到的指令后作出相应的动作

最新推荐

recommend-type

第一章计算机系统概述.ppt

第一章计算机系统概述.ppt
recommend-type

智慧城市科技有限公司出资协议(确定稿).doc

智慧城市科技有限公司出资协议(确定稿).doc
recommend-type

智能化技术在电气工程自动化控制中的应用分析-1.docx

智能化技术在电气工程自动化控制中的应用分析-1.docx
recommend-type

网络玄幻小说受众特征研究.docx

网络玄幻小说受众特征研究.docx
recommend-type

基于CesiumJS的三维WebGIS研究与开发.docx

基于CesiumJS的三维WebGIS研究与开发.docx
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在