[rank1]: Traceback (most recent call last): [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank1]: launch() [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank1]: run_exp() [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/train/tuner.py", line 103, in run_exp [rank1]: _training_function(config={"args": args, "callbacks": callbacks}) [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/train/tuner.py", line 68, in _training_function [rank1]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft [rank1]: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/trainer.py", line 2241, in train [rank1]: return inner_training_loop( [rank1]: ^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/trainer.py", line 2318, in _inner_training_loop [rank1]: self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/integrations/deepspeed.py", line 416, in deepspeed_init [rank1]: optimizer, lr_scheduler = deepspeed_optim_sched( [rank1]: ^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/integrations/deepspeed.py", line 341, in deepspeed_optim_sched [rank1]

时间: 2025-04-13 13:40:12 浏览: 53
<think>好的,我现在遇到了一个问题,在使用DeepSpeed的Transformers Trainer时,调用训练函数并尝试从检查点恢复时出现了错误。具体来说,我是在使用LLAMA Factory和Python 3.12的环境下运行代码的。需要仔细分析可能的原因并找到解决方案。 首先,我需要确认错误的具体信息。用户没有提供详细的错误日志,但根据经验,这类问题通常涉及几个方面:检查点路径是否正确、DeepSpeed配置是否兼容、库版本冲突、或者Python版本的支持问题。 第一步,检查检查点路径是否正确。DeepSpeed在恢复训练时需要正确指定`resume_from_checkpoint`参数,这个参数应该指向包含`model.safetensors`或`pytorch_model.bin`以及`deepspeed`相关文件的目录。如果路径错误或文件缺失,就会导致加载失败。需要确保路径存在,并且检查点文件完整。 接下来,考虑DeepSpeed的配置。用户可能在使用自定义的DeepSpeed配置文件,比如`ds_config.json`。需要确认配置中的参数是否与当前训练环境兼容,特别是`train_batch_size`、`gradient_accumulation_steps`等是否与恢复训练时的设置一致。此外,混合精度训练的设置(如`fp16`或`bf16`)也需要检查是否与模型和硬件兼容。 然后,版本兼容性是一个重要因素。DeepSpeed和Transformers库的版本需要兼容,同时LLAMA Factory可能对特定版本有依赖。Python 3.12相对较新,可能某些库尚未支持该版本,导致兼容性问题。例如,PyTorch或其他依赖项可能还没有发布适用于Python 3.12的版本,从而引发错误。用户应检查各库的官方文档,确认它们是否支持Python 3.12,必要时降级Python版本到3.10或3.11。 此外,检查错误日志中的具体提示是关键。例如,如果出现`KeyError`或`AttributeError`,可能指向代码中的特定行,需要检查相关代码是否存在问题。例如,用户提供的引用[2]中提到,工具调用需要确保参数格式正确,这提示在恢复检查点时,参数传递可能不符合预期,需要验证传入的`resume_from_checkpoint`参数是否正确处理。 另外,用户提到的引用[1]中的代码`train_dataloader = tpu_spmd_dataloader(train_dataloader)`可能与TPU相关,但DeepSpeed主要针对GPU优化。如果用户错误地混用了TPU和DeepSpeed的配置,也可能导致问题。需要确认训练环境是否正确配置,是否同时使用了不兼容的硬件后端。 可能的解决步骤包括: 1. 验证检查点路径是否正确,并确保所有必要文件存在。 2. 检查DeepSpeed配置文件中的参数,确保与恢复训练时的设置一致。 3. 降级Python版本到3.11或3.10,测试是否存在版本兼容性问题。 4. 更新DeepSpeed、Transformers和LLAMA Factory到最新版本,以获取可能的修复。 5. 查阅DeepSpeed的官方文档和GitHub Issues,寻找类似问题的解决方案。 6. 如果错误信息涉及特定参数或函数,检查相关代码逻辑,确保参数格式正确,如引用[2]中提到的JSON参数验证。 最后,如果以上步骤无法解决问题,用户应提供完整的错误日志,以便更精确地定位问题所在。</think>### 逐步解答 针对使用DeepSpeed Transformers Trainer时从检查点恢复训练报错的问题,以下是分步解决方案: 1. **验证检查点路径和文件完整性** - 确保`resume_from_checkpoint`参数指向的目录包含以下文件: - 模型权重文件(如`pytorch_model.bin`或`model.safetensors`) - DeepSpeed检查点文件(如`zero_pp_rank_0_mp_rank_00_optim_states.pt`) - 训练状态文件(如`trainer_state.json`) - 示例代码: ```python checkpoint_dir = "path/to/checkpoint-100" assert os.path.exists(checkpoint_dir), "检查点路径不存在" assert os.path.isfile(os.path.join(checkpoint_dir, "pytorch_model.bin")), "模型权重文件缺失" ``` 2. **检查DeepSpeed配置兼容性** - 确保`deepspeed_config`中的批次大小设置与恢复训练时一致: ```json { "train_batch_size": "auto", "gradient_accumulation_steps": "auto", "fp16": { "enabled": true } } ``` - 如果使用`bf16`混合精度训练,需确认硬件支持(如Ampere架构GPU)[^1] 3. **处理Python版本兼容性** - 目前(2024年7月)PyTorch 2.3+仅正式支持到Python 3.11 - 建议创建新虚拟环境: ```bash conda create -n py311 python=3.11 conda activate py311 pip install torch==2.3.1 deepspeed==0.14.2 ``` 4. **更新相关库版本** - 升级关键库到最新兼容版本: ```bash pip install -U transformers datasets accelerate llama-factory ``` - 注意LLAMA Factory的DeepSpeed集成要求: ```python from llama_factory import DeepspeedConfig ``` 5. **检查混合精度训练配置** - 在训练脚本中显式设置精度类型: ```python trainer = transformers.Trainer( resume_from_checkpoint=True, deepspeed=deepspeed_config, fp16_full_eval=False, # 与训练配置保持一致 bf16=use_bf16, ) ``` 6. **调试工具调用验证** - 参考引用[2]的方法,添加参数验证层: ```python def safe_resume_checkpoint(config): if not isinstance(config.resume_from_checkpoint, (str, bool)): raise ValueError("检查点参数类型错误,应为字符串或布尔值") if isinstance(config.resume_from_checkpoint, str): validate_checkpoint_structure(config.resume_from_checkpoint) ``` 7. **处理分布式训练配置** - 对于多GPU训练,添加NCCL环境变量: ```bash export NCCL_DEBUG=INFO export NCCL_SOCKET_IFNAME=eth0 ``` **典型错误解决方案示例:** ```python # 修复检查点加载的典型代码调整 from transformers import TrainingArguments args = TrainingArguments( output_dir="./output", deepspeed="./ds_config.json", resume_from_checkpoint=True # 改为具体路径如"./output/checkpoint-100" ) # 正确加载方式应显式指定路径 trainer.train(resume_from_checkpoint="./output/checkpoint-100") ```
阅读全文

相关推荐

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] ***************************************** W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [rank0]: Traceback (most recent call last): [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank0]: return importlib.import_module("." + module_name, self.__name__) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank0]: return _bootstrap._gcd_import(name[level:], package, level) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank0]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank0]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank0]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank0]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank0]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank0]: from .tokenization_llama import LlamaTokenizer [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank0]: import sentencepiece as spm [rank0]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank0]: from . import _sentencepiece [rank0]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank0]: tokenizer = AutoTokenizer.from_pretrained( [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank0]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank0]: return getattr(module, class_name) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank0]: module = self._get_module(self._class_to_module[name]) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank0]: raise RuntimeError( [rank0]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank0]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank0]: tokenizer_module = load_tokenizer(model_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank0]: raise OSError("Failed to load tokenizer.") from e [rank0]: OSError: Failed to load tokenizer. [rank3]: Traceback (most recent call last): [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank3]: return importlib.import_module("." + module_name, self.__name__) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank3]: return _bootstrap._gcd_import(name[level:], package, level) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank3]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank3]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank3]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank3]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank3]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank3]: from .tokenization_llama import LlamaTokenizer [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank3]: import sentencepiece as spm [rank3]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank3]: from . import _sentencepiece [rank3]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank3]: The above exception was the direct cause of the following exception: [rank3]: Traceback (most recent call last): [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank3]: tokenizer = AutoTokenizer.from_pretrained( [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank3]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank3]: return getattr(module, class_name) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank3]: module = self._get_module(self._class_to_module[name]) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank3]: raise RuntimeError( [rank3]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank3]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank3]: The above exception was the direct cause of the following exception: [rank3]: Traceback (most recent call last): [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank3]: launch() [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank3]: run_exp() [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank3]: _training_function(config={"args": args, "callbacks": callbacks}) [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank3]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank3]: tokenizer_module = load_tokenizer(model_args) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank3]: raise OSError("Failed to load tokenizer.") from e [rank3]: OSError: Failed to load tokenizer. [rank1]: Traceback (most recent call last): [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank1]: return importlib.import_module("." + module_name, self.__name__) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank1]: return _bootstrap._gcd_import(name[level:], package, level) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank1]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank1]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank1]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank1]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank1]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank1]: from .tokenization_llama import LlamaTokenizer [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank1]: import sentencepiece as spm [rank1]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank1]: from . import _sentencepiece [rank1]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank1]: tokenizer = AutoTokenizer.from_pretrained( [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank1]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank1]: return getattr(module, class_name) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank1]: module = self._get_module(self._class_to_module[name]) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank1]: raise RuntimeError( [rank1]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank1]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank1]: launch() [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank1]: run_exp() [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank1]: _training_function(config={"args": args, "callbacks": callbacks}) [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank1]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank1]: tokenizer_module = load_tokenizer(model_args) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank1]: raise OSError("Failed to load tokenizer.") from e [rank1]: OSError: Failed to load tokenizer. [rank2]: Traceback (most recent call last): [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank2]: return importlib.import_module("." + module_name, self.__name__) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank2]: return _bootstrap._gcd_import(name[level:], package, level) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank2]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank2]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank2]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank2]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank2]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank2]: from .tokenization_llama import LlamaTokenizer [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank2]: import sentencepiece as spm [rank2]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank2]: from . import _sentencepiece [rank2]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank2]: The above exception was the direct cause of the following exception: [rank2]: Traceback (most recent call last): [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank2]: tokenizer = AutoTokenizer.from_pretrained( [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank2]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank2]: return getattr(module, class_name) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank2]: module = self._get_module(self._class_to_module[name]) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank2]: raise RuntimeError( [rank2]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank2]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank2]: The above exception was the direct cause of the following exception: [rank2]: Traceback (most recent call last): [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank2]: launch() [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank2]: run_exp() [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank2]: _training_function(config={"args": args, "callbacks": callbacks}) [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank2]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank2]: tokenizer_module = load_tokenizer(model_args) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank2]: raise OSError("Failed to load tokenizer.") from e [rank2]: OSError: Failed to load tokenizer. [rank0]:[W703 16:13:30.861219244 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:13:31.449512 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913282 closing signal SIGTERM W0703 16:13:31.450263 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913283 closing signal SIGTERM W0703 16:13:31.450724 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913284 closing signal SIGTERM E0703 16:13:31.765744 3913223 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3913281) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:13:31 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3913281) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '38589', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-00-01/training_args.yaml']' returned non-zero exit status 1.

Traceback (most recent call last): File "/home/adv/anaconda3/envs/llamaFactory/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) File "/home/adv/LLaMA-Factory/src/llamafactory/cli.py", line 112, in main run_exp() File "/home/adv/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/adv/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/adv/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 52, in run_sft model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) File "/home/adv/LLaMA-Factory/src/llamafactory/model/loader.py", line 160, in load_model model = load_class.from_pretrained(**init_kwargs) File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 558, in from_pretrained return model_class.from_pretrained( File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3820, in from_pretrained dispatch_model(model, **device_map_kwargs) File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/accelerate/big_modeling.py", line 498, in dispatch_model model.to(device) File "/home/adv/anaconda3/envs/llamaFactory/lib/python3.10/site-packages/transformers/modeling_utils.py", line 2702, in to raise ValueError( ValueError: .to is not supported for 4-bit or 8-bit bitsandbytes models. Please use the model as it is, since the model has already been set to the correct devices and casted to the correct dtype.

[INFO|2025-05-27 09:38:24] llamafactory.hparams.parser:401 >> Process rank: 0, world size: 1, device: cuda:0, distributed training: False, compute dtype: torch.float16 Traceback (most recent call last): File "/root/miniconda3/envs/llama_factory/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/cli.py", line 115, in main COMMAND_MAP[command]() File "/home/ly/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/ly/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/ly/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft tokenizer_module = load_tokenizer(model_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/model/loader.py", line 80, in load_tokenizer init_kwargs = _get_init_kwargs(model_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/model/loader.py", line 66, in _get_init_kwargs model_args.model_name_or_path = try_download_model_from_other_hub(model_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ly/LLaMA-Factory/src/llamafactory/extras/misc.py", line 266, in try_download_model_from_other_hub return snapshot_download( ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/snapshot_download.py", line 108, in snapshot_download return _snapshot_download( ^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/snapshot_download.py", line 254, in _snapshot_download endpoint = _api.get_endpoint_for_read( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/api.py", line 332, in get_endpoint_for_read if not self.repo_exists( ^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/llama_factory/lib/python3.12/site-packages/modelscope/hub/api.py", line 379, in repo_exists raise Exception('Invalid repo_id: %s, must be of format namespace/name' % repo_type) Exception: Invalid repo_id: model, must be of format namespace/name什么原因?

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,321 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file chat_template.jinja /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:43,904 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:697] 2025-07-03 16:30:43,913 >> loading configuration file /mnt/data1/models/1.5B/config.json [INFO|configuration_utils.py:771] 2025-07-03 16:30:43,919 >> Model config Qwen2Config { "_name_or_path": "/mnt/data1/models/1.5B", "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:44,493 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank1]:[W703 16:30:45.102845887 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank2]:[W703 16:30:45.126706430 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank3]:[W703 16:30:45.136836682 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 120 examples [00:00, 6525.39 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank0]:[W703 16:31:05.679961201 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]: multiprocess.pool.RemoteTraceback: [rank0]: """ [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker [rank0]: result = (True, func(*args, **kwds)) [rank0]: ^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 688, in _write_generator_to_queue [rank0]: for i, result in enumerate(func(**kwargs)): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3501, in _map_single [rank0]: for i, example in iter_outputs(shard_iterable): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3475, in iter_outputs [rank0]: yield i, apply_function(example, i, offset=offset) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3398, in apply_function [rank0]: processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 94, in __call__ [rank0]: if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: [rank0]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 278, in __getitem__ [rank0]: value = self.data[key] [rank0]: ~~~~~~~~~^^^^^ [rank0]: KeyError: 'instruction' [rank0]: """ [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft [rank0]: dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 304, in get_dataset [rank0]: dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 182, in _get_merged_dataset [rank0]: datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 162, in _load_single_dataset [rank0]: return align_dataset(dataset, dataset_attr, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 279, in align_dataset [rank0]: return dataset.map( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 557, in wrapper [rank0]: out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3171, in map [rank0]: for rank, done, content in iflatmap_unordered( [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in iflatmap_unordered [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get [rank0]: raise self._value [rank0]: KeyError: 'instruction' [rank0]:[W703 16:31:06.912491219 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:31:07.960560 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914916 closing signal SIGTERM W0703 16:31:07.961188 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914917 closing signal SIGTERM W0703 16:31:07.961536 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914918 closing signal SIGTERM E0703 16:31:08.371267 3914856 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3914915) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:31:07 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3914915) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '41919', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-29-46/training_args.yaml']' returned non-zero exit status 1.

INFO|2025-03-04 21:58:56] llamafactory.model.model_utils.misc:157 >> Found linear modules: up_proj,o_proj,down_proj,v_proj,q_proj,k_proj,gate_proj [INFO|2025-03-04 21:58:56] llamafactory.model.loader:157 >> trainable params: 36,929,536 || all params: 1,814,017,536 || trainable%: 2.0358 [INFO|trainer.py:746] 2025-03-04 21:58:57,032 >> Using auto half precision backend [WARNING|trainer.py:781] 2025-03-04 21:58:57,033 >> No label_names provided for model class PeftModelForCausalLM. Since PeftModel hides base models input arguments, if label_names is not given, label_names can't be set automatically within Trainer. Note that empty label_names list will be used instead. [INFO|trainer.py:2789] 2025-03-04 21:58:57,034 >> Loading model from saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-03-04-21-49-43/checkpoint-30. Traceback (most recent call last): File "/root/miniconda3/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/cli.py", line 112, in main run_exp() File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/transformers/trainer.py", line 2213, in train self._load_from_checkpoint(resume_from_checkpoint) File "/root/miniconda3/lib/python3.12/site-packages/transformers/trainer.py", line 2877, in _load_from_checkpoint model.load_adapter(resume_from_checkpoint, active_adapter, is_trainable=True) File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 1117, in load_adapter load_result = set_peft_model_state_dict( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/utils/save_and_load.py", line 395, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 2581, in load_state_dict raise RuntimeError( RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM: size mismatch for base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight: copying a param with shape torch.Size([8, 1536]) from checkpoint, the shape in current model is torch.Size([32, 1536]).

训练出错。 Exit code: 1 [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,543 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,545 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:48:24,808 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:691] 2025-07-08 19:48:24,811 >> loading configuration file D:\llamafactory\LLaMA-Factory\Qwen2.5-0.5B-Instruct\config.json [INFO|configuration_utils.py:765] 2025-07-08 19:48:24,815 >> Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 896, "initializer_range": 0.02, "intermediate_size": 4864, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 14, "num_hidden_layers": 24, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.51.0", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:48:25,077 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Converting format of dataset (num_proc=16): 0%| | 0/513 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] multiprocess.pool.RemoteTraceback: """ Traceback (most recent call last): File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 125, in worker result = (True, func(*args, **kwds)) ~~~~^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 688, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): ~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3501, in _map_single for i, example in iter_outputs(shard_iterable): ~~~~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3475, in iter_outputs yield i, apply_function(example, i, offset=offset) ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3398, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 94, in __call__ if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\formatting\formatting.py", line 278, in __getitem__ value = self.data[key] ~~~~~~~~~^^^^^ KeyError: 'instruction' """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\Scripts\llamafactory-cli.exe\__main__.py", line 7, in <module> sys.exit(main()) ~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\cli.py", line 151, in main COMMAND_MAP[command]() ~~~~~~~~~~~~~~~~~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\sft\workflow.py", line 51, in run_sft dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 304, in get_dataset dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 182, in _get_merged_dataset datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 162, in _load_single_dataset return align_dataset(dataset, dataset_attr, data_args, training_args) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 279, in align_dataset return dataset.map( ~~~~~~~~~~~^ dataset_converter, ^^^^^^^^^^^^^^^^^^ ...<2 lines>... **kwargs, ^^^^^^^^^ ) ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ~~~~^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3171, in map for rank, done, content in iflatmap_unordered( ~~~~~~~~~~~~~~~~~~^ pool, Dataset._map_single, kwargs_iterable=kwargs_per_job ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ): ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 728, in iflatmap_unordered [async_result.get(timeout=0.05) for async_result in async_results] ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 774, in get raise self._value KeyError: 'instruction'怎么解决

pdf

最新推荐

recommend-type

Screenshot_20250709_163758_com.tencent.tmgp.pubgmhd.jpg

Screenshot_20250709_163758_com.tencent.tmgp.pubgmhd.jpg
recommend-type

射击.cpp

射击
recommend-type

基于EasyX图形库的动画设计与C语言课程改革.docx

基于EasyX图形库的动画设计与C语言课程改革.docx
recommend-type

网络爬虫源代码.doc

网络爬虫源代码.doc
recommend-type

llcom-硬件开发资源

LuaTCPMQTT
recommend-type

飞思OA数据库文件下载指南

根据给定的文件信息,我们可以推断出以下知识点: 首先,从标题“飞思OA源代码[数据库文件]”可以看出,这里涉及的是一个名为“飞思OA”的办公自动化(Office Automation,简称OA)系统的源代码,并且特别提到了数据库文件。OA系统是用于企事业单位内部办公流程自动化的软件系统,它旨在提高工作效率、减少不必要的工作重复,以及增强信息交流与共享。 对于“飞思OA源代码”,这部分信息指出我们正在讨论的是OA系统的源代码部分,这通常意味着软件开发者或维护者拥有访问和修改软件底层代码的权限。源代码对于开发人员来说非常重要,因为它是软件功能实现的直接体现,而数据库文件则是其中的一个关键组成部分,用来存储和管理用户数据、业务数据等信息。 从描述“飞思OA源代码[数据库文件],以上代码没有数据库文件,请从这里下”可以分析出以下信息:虽然文件列表中提到了“DB”,但实际在当前上下文中,并没有提供包含完整数据库文件的下载链接或直接说明,这意味着如果用户需要获取完整的飞思OA系统的数据库文件,可能需要通过其他途径或者联系提供者获取。 文件的标签为“飞思OA源代码[数据库文件]”,这与标题保持一致,表明这是一个与飞思OA系统源代码相关的标签,而附加的“[数据库文件]”特别强调了数据库内容的重要性。在软件开发中,标签常用于帮助分类和检索信息,所以这个标签在这里是为了解释文件内容的属性和类型。 文件名称列表中的“DB”很可能指向的是数据库文件。在一般情况下,数据库文件的扩展名可能包括“.db”、“.sql”、“.mdb”、“.dbf”等,具体要看数据库的类型和使用的数据库管理系统(如MySQL、SQLite、Access等)。如果“DB”是指数据库文件,那么它很可能是以某种形式的压缩文件或包存在,这从“压缩包子文件的文件名称列表”可以推测。 针对这些知识点,以下是一些详细的解释和补充: 1. 办公自动化(OA)系统的构成: - OA系统由多个模块组成,比如工作流管理、文档管理、会议管理、邮件系统、报表系统等。 - 系统内部的流程自动化能够实现任务的自动分配、状态跟踪、结果反馈等。 - 通常,OA系统会提供用户界面来与用户交互,如网页形式的管理界面。 2. 数据库文件的作用: - 数据库文件用于存储数据,是实现业务逻辑和数据管理的基础设施。 - 数据库通常具有数据的CRUD(创建、读取、更新、删除)功能,是信息检索和管理的核心组件。 - 数据库文件的结构和设计直接关系到系统的性能和可扩展性。 3. 数据库文件类型: - 根据数据库管理系统不同,数据库文件可以有不同格式。 - 例如,MySQL数据库的文件通常是“.frm”文件存储表结构,“.MYD”存储数据,“.MYI”存储索引。 - 对于SQLite,数据库就是一个单独的“.sqlite”文件。 4. 数据库设计和管理: - 数据库设计需要遵循一定的规范和最佳实践,如范式化以减少数据冗余。 - 管理数据库包括数据备份、恢复、性能调优、安全性管理等。 5. OA系统开发及源代码维护: - 开发一个OA系统涉及需求分析、系统设计、编码实现、测试、部署和维护等多个阶段。 - OA系统源代码的维护工作包括代码审查、重构、版本控制和更新等。 综上所述,我们可以知道“飞思OA源代码[数据库文件]”所提供的信息包括了对飞思OA系统及其数据库文件的基础介绍和可能的获取途径。对于开发者而言,需要了解如何管理和操作这些数据库文件以确保系统的正常运行和数据的完整性。此外,对于那些希望进行系统定制或二次开发的用户,源代码的可访问性是非常重要的,这可以允许用户根据自己的需求来修改和增强系统功能。
recommend-type

Qt信号与槽优化:提升系统性能与响应速度的实战技巧

# 摘要 本文系统地探讨了Qt框架中信号与槽机制的原理、高级特性、性能优化以及在大型项目中的应用。首先,概述了信号与槽的基本概念和工作原理,包括信号的发射、槽函数的绑定与调用过程。随后,本文深入分析了信号与槽的内部机制,如数据类型兼容性和连接类型,并探讨了优化信
recommend-type

D8流向算法

<think>我们被要求解释或实现D8流向算法。D8流向算法是一种用于水文分析的数字高程模型(DEM)处理方法,用于确定地表水流的方向。每个像元的水流方向被指定为指向周围8个相邻像元中坡度最陡的那个方向。 ### 算法原理 在D8算法中,每个像元的水流方向被定义为指向其8个相邻像元(包括对角线方向)中坡度最大的方向。坡度由高程差除以距离计算,其中相邻像元的距离为1(水平和垂直方向)或√2(对角线方向)。具体步骤如下: 1. 对于中心像元,计算其与8个相邻像元的高程差(中心像元高程减去相邻像元高程,得到正值表示下坡)。 2. 计算每个相邻方向的坡度:坡度 = 高程差 / 距离(水平/垂直方向
recommend-type

精选36个精美ICO图标免费打包下载

在当今的软件开发和应用程序设计中,图标作为图形用户界面(GUI)的一个重要组成部分,承担着向用户传达信息、增加美观性和提高用户体验的重要角色。图标不仅仅是一个应用程序或文件的象征,它还是品牌形象在数字世界中的延伸。因此,开发人员和设计师往往会对默认生成的图标感到不满意,从而寻找更加精美和个性化的图标资源。 【标题】中提到的“精美ICO图标打包下载”,指向用户提供的是一组精选的图标文件,这些文件格式为ICO。ICO文件是一种图标文件格式,主要被用于Windows操作系统中的各种文件和应用程序的图标。由于Windows系统的普及,ICO格式的图标在软件开发中有着广泛的应用。 【描述】中提到的“VB、VC编写应用的自带图标很难看,换这些试试”,提示我们这个ICO图标包是专门为使用Visual Basic(VB)和Visual C++(VC)编写的应用程序准备的。VB和VC是Microsoft公司推出的两款编程语言,其中VB是一种主要面向初学者的面向对象编程语言,而VC则是更加专业化的C++开发环境。在这些开发环境中,用户可以选择自定义应用程序的图标,以提升应用的视觉效果和用户体验。 【标签】中的“.ico 图标”直接告诉我们,这些打包的图标是ICO格式的。在设计ICO图标时,需要注意其独特的尺寸要求,因为ICO格式支持多种尺寸的图标,例如16x16、32x32、48x48、64x64、128x128等像素尺寸,甚至可以包含高DPI版本以适应不同显示需求。此外,ICO文件通常包含多种颜色深度的图标,以便在不同的背景下提供最佳的显示效果。 【压缩包子文件的文件名称列表】显示了这些精美ICO图标的数量,即“精美ICO图标36个打包”。这意味着该压缩包内包含36个不同的ICO图标资源。对于软件开发者和设计师来说,这意味着他们可以从这36个图标中挑选适合其应用程序或项目的图标,以替代默认的、可能看起来不太吸引人的图标。 在实际应用中,将这些图标应用到VB或VC编写的程序中,通常需要编辑程序的资源文件或使用相应的开发环境提供的工具进行图标更换。例如,在VB中,可以通过资源编辑器选择并替换程序的图标;而在VC中,则可能需要通过设置项目属性来更改图标。由于Windows系统支持在编译应用程序时将图标嵌入到可执行文件(EXE)中,因此一旦图标更换完成并重新编译程序,新图标就会在程序运行时显示出来。 此外,当谈及图标资源时,还应当了解图标制作的基本原则和技巧,例如:图标设计应简洁明了,以传达清晰的信息;色彩运用需考虑色彩搭配的美观性和辨识度;图标风格要与应用程序的整体设计风格保持一致,等等。这些原则和技巧在选择和设计图标时都非常重要。 总结来说,【标题】、【描述】、【标签】和【压缩包子文件的文件名称列表】共同勾勒出了一个为VB和VC编程语言用户准备的ICO图标资源包。开发者通过下载和使用这些图标,能够有效地提升应用程序的外观和用户体验。在这一过程中,了解和应用图标设计与应用的基本知识至关重要。
recommend-type

【Qt数据库融合指南】:MySQL与Qt无缝集成的技巧

# 摘要 本文全面探讨了Qt数据库集成的基础知识与进阶应用,从Qt与MySQL的基础操作讲起,深入到Qt数据库编程接口的配置与使用,并详细介绍了数据模型和视图的实现。随着章节的深入,内容逐渐从基础的数据操作界面构建过渡到高级数据库操作实践,涵盖了性能优化、安全性策略和事务管理。本文还特别针对移动设备上的数据库集成进行了讨