# UNet面试题
介绍关于UNet架构的8个热门面试问题
UNet架构是专门为图像分割任务设计的深度学习模型。由于其能够处理高分辨率图像并生成准确的分割图,因此广泛应用于各种应用,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。UNet 非常适合多类图像分割任务,但可能需要平衡训练数据或使用概率分割图来处理类重叠或不平衡的类分布。
面试问题与答案
【1】您能解释一下什么是UNet架构以及它是如何使用的吗?
UNet架构是专门为图像分割任务设计的深度学习模型。Olaf Ronneberger 等人在论文“U-Net:用于生物医学图像分割的卷积网络”中介绍了它。
UNet架构由两部分组成:收缩路径和扩展路径。收缩路径是一系列卷积层和最大池化层,用于对输入图像进行下采样并提取特征。扩展路径是一系列卷积层和上采样层,它们对收缩路径中的特征图进行上采样,并将它们与输入图像中的特征组合以生成最终的分割图。
UNet 架构通常在大型带注释图像数据集上进行端到端训练,以预测每个图像的像素级分割图。可以训练模型来分割单个类别或多个类别,具体取决于具体任务。
UNet 广泛应用于各种图像分割任务,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。它以其处理高分辨率图像和生成准确分割图的能力而闻名。
【2】UNet架构的主要组成部分是什么,它们如何协同工作?
UNet架构的主要组成部分是收缩路径、扩展路径和跳跃连接。
收缩路径是一系列卷积层和最大池化层,它们对输入图像进行下采样并从中提取特征。卷积层将一组滤波器应用于输入图像并生成特征图,而最大池化层通过在像素窗口内获取最大值来对特征图进行下采样。
最终的分割图是通过对收缩路径中的特征图进行上采样并将其与扩展路径中输入图像的特征相结合而创建的,扩展路径是一系列卷积层和上采样层。卷积层将一系列滤波器应用于上采样的特征图以创建最终的分割图。相反,上采样层通过重复像素窗口内的值来提高特征图的空间分辨率。
这些连接(称为“跳跃连接”)绕过扩展路径中的一个或多个级别,并将它们链接到收缩路径中的相应层。它们使输入图像中的高级和低级信息能够合并到模型中,从而提高分割图的精度。
总体而言,UNet 架构的工作原理是使用收缩路径从输入图像中提取特征,使用扩展路径和跳跃连接将这些特征与输入图像的特征组合起来,并使用扩展路径中的卷积层生成最终的分割图。
【3】UNet 架构与全卷积网络 (FCN) 等其他图像分割系统有何区别?
UNet架构和全卷积网络(FCN)都是常用于图像分割任务的深度学习架构。然而,这两种架构之间存在一些关键差异:
-
-
架构:
UNet架构由收缩路径和扩展路径组成,它们通过跳跃连接连接。收缩路径用于从输入图像中提取特征,扩展路径用于对特征图进行上采样并生成最终的分割图。相比之下,FCN 由单个编码器-解码器结构组成,其中编码器是一系列卷积层和最大池化层,用于对输入图像进行下采样并提取特征,解码器是一系列卷积层和上采样层,用于对特征图进行上采样并生成最终的分割图。
-
参数数量:
由于跳跃连接和扩展路径中的附加层,UNet 架构通常比 FCN 具有更多参数。这会使 UNet 更容易出现过度拟合,尤其是在处理小型数据集时。
-
计算效率:
FCN 通常比 UNet 具有更高的计算效率,因为它的参数更少,并且不需要对跳跃连接进行额外的计算。这可以使 FCN 更适合需要快速推理时间或低计算资源的任务。
-
性能:
一般来说,UNet 在图像分割任务上往往比 FCN 表现更好,特别是在处理高分辨率图像或具有大量类别的数据集时。然而,两种架构的性能可能会根据具体任务和训练数据的质量而有所不同。
-
【4】您能讨论一下使用UNet架构进行图像分割任务的优点和缺点吗?
以下是使用 UNet 架构进行图像分割任务的一些优点和缺点:
优点:
高性能:UNet 以生成准确的分割图而闻名,特别是在处理高分辨率图像或具有许多类别的数据集时。
良好处理多类任务:UNet 非常适合多类图像分割任务,因为它可以处理大量类并为每个类生成像素级分割图。
训练数据的有效利用:UNet 使用跳跃连接,这使得模型能够合并输入图像中的高级和低级特征。这可以使 UNet 更有效地使用训练数据并提高模型的性能。
缺点:
大量参数:由于跳跃连接和扩展路径中的附加层,UNet 具有许多参数。这可能会使模型更容易过度拟合,尤其是在处理小型数据集时。
高计算成本:由于跳跃连接,UNet 需要额外的计算,这使得它比其他架构的计算成本更高。
对初始化敏感:UNet 对模型参数的初始化敏感,因为跳跃连接会放大初始权重中的任何误差。与其他架构相比,这使得训练 UNet 变得更加困难。
【5】您能提供一个 UNet 架构的实际应用示例吗?
UNet 架构的实际应用示例之一是医学图像分割。在此应用中,UNet 模型在带注释的医学图像(例如 CT 扫描或 MRI)的大型数据集上进行训练,目的是预测每个图像的像素级分割图。分割图可以识别图像中的不同结构或组织,例如器官、骨骼或肿瘤。
医学图像分割是医学中的一项重要任务,因为它可以帮助医生和研究人员更好地了解身体的解剖学和生理学并识别异常或疾病。UNet 架构非常适合这项任务,因为它能够处理高分辨率图像并生成准确的分割图。
UNet 架构的其他实际应用包括卫星图像分析、自动驾驶车辆中的物体检测和土壤测绘。
【6】UNet架构如何处理多类图片分割任务?您介意概述一下任何挑战或需要记住的事情吗?
UNet 架构非常适合处理多类图像分割任务,因为它可以为每个类生成像素级分割图。在多类图像分割任务中,UNet 模型在大型带注释图像数据集上进行训练,其中每个像素都标有其所属的类。然后使用该模型来预测新图像中每个像素的类标签。
多类图像分割的挑战之一是训练数据中类的分布不平衡。例如,如果图像中存在多个类别的对象,则某些类别可能比其他类别更常见。这可能会导致模型出现偏差,因为它在预测更常见的类别时可能更准确,而在预测不太常见的类别时则不太准确。为了解决这个问题,可能需要通过对不太常见的类进行过采样或使用数据增强技术来平衡训练数据。
多类图像分割的另一个挑战是处理类重叠,其中像素可能属于多个类。例如,在医学图像分割任务中,两个器官之间的边界可能难以区分,因为该区域中的像素可能属于两个器官。为了解决这个问题,可能需要使用能够生成概率分割图的模型,其中每个像素都被分配属于每个类别的概率。
【7】您能讨论一下使用 UNet 架构进行图像分割任务的最新进展或趋势吗?
以下是使用 UNet 架构进行图像分割任务的一些最新进展或趋势:
深度学习技术的使用:UNet架构的使用趋势之一是越来越多地使用深度学习技术,例如卷积神经网络(CNN)和循环神经网络(RNN),以提高模型的性能。这些技术可以让模型从输入图像中学习更复杂的特征并提高分割图的准确性。
使用注意力机制:另一个趋势是使用注意力机制,例如自注意力或空间注意力,以提高模型关注输入图像特定区域的能力。这在图像的某些区域比其他区域更重要或信息更丰富的任务中特别有用。
使用数据增强:另一个趋势是使用数据增强技术,例如图像裁剪、旋转或噪声注入,以提高模型的泛化能力并降低过度拟合的风险。当处理小型或不平衡的数据集时,这一点尤其重要。
迁移学习的使用:另一个趋势是迁移学习的使用,其中预训练的模型在新数据集上进行微调,以提高 UNet 架构的性能。这在处理小型数据集时特别有用,因为它可以允许模型利用从更大的相关数据集中学到的知识。
【8】如何为 UNet 模型选择合适的参数,例如滤波器数量或内核大小?您能否讨论一下选择这些参数时遵循的任何注意事项或最佳实践?
为 UNet 模型选择适当的参数是模型开发过程中的重要步骤,因为它可以显着影响模型的性能。以下是为 UNet 模型选择参数时可以遵循的一些注意事项或最佳实践:
滤波器的数量:UNet 模型中滤波器的数量决定了卷积层生成的特征图的数量。大量的滤波器可以让模型从输入图像中学习更复杂的特征,但也会增加参数数量和过度拟合的风险。通常建议从少量过滤器开始,并根据需要逐渐增加。
内核大小:内核大小确定卷积层用来生成特征图的像素窗口的大小。较大的内核大小可以让模型从输入图像中捕获更多上下文,但也会增加计算成本和过度拟合的风险。通常建议从较小的内核大小开始,然后根据需要逐渐增加。
步幅:步幅确定将滤波器应用于输入图像时卷积层使用的步长。较大的步幅可以减小特征图的大小和计算成本,但也会降低模型从输入图像中捕获细粒度细节的能力。通常建议从小步开始,如果需要的话逐渐增加。
池化大小:池化大小决定了最大池化层用于对特征图进行下采样的像素窗口的大小。较大的池化大小可以减小特征图的大小和计算成本,但也会降低模型从输入图像中捕获细粒度细节的能力。通常建议从较小的池大小开始,然后根据需要逐渐增加。
结论
以下是关于 UNet 架构讨论的要点的总结:
-
-
UNet架构是专门为图像分割任务设计的深度学习模型。它由收缩路径和扩展路径组成,这些路径通过跳跃连接连接。
-
收缩路径是一系列卷积层和最大池化层,它们对输入图像进行下采样并从中提取特征。扩展路径是一系列卷积层和上采样层,它们对收缩路径中的特征图进行上采样,并将它们与输入图像中的特征组合以生成最终的分割图。
-
UNet 广泛应用于各种图像分割任务,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。它以其处理高分辨率图像和生成准确分割图的能力而闻名。
-
UNet 非常适合多类图像分割任务,因为它可以处理大量类并为每个类生成像素级分割图。然而,可能需要平衡训练数据或使用概率分割图来处理类重叠或不平衡的类分布。
-
UNet 架构使用的一些最新发展或趋势包括深度学习技术、注意力机制、数据增强和迁移学习的使用。
-
在为 UNet 模型选择参数时,重要的是要考虑滤波器的数量、内核大小、步幅和池化大小,因为这些会显着影响模型的性能。通常建议从这些参数的较小值开始,并根据需要逐渐增加它们。
-
# Mamba真比Transformer更优吗
Mamba原作者:两个都要!混合架构才是最优解
Mamba模型由于匹敌Transformer的巨大潜力,在推出半年多的时间内引起了巨大关注。但在大规模预训练的场景下,这两个架构还未有「一较高低」的机会。最近,英伟达、CMU、普林斯顿等机构联合发表的实证研究论文填补了这个空白。
去年12月,CMU、普林斯顿的两位华人学者Albert Gu和Tri Dao一举推出了Mamba架构,向Transformer多年的霸主地位发起挑战。
论文地址:https://arxiv.org/abs/2312.00752
完全抛弃注意力机制和MLP模块、上下文长度线性缩放、推理速度比Transformer快5倍…这些特点让所有人都为之一振,Jim Fan大佬也发推赞叹「为推翻Transformer的研究感到兴奋」。
论文发表后的6个月中,两位作者发现,虽然Mamba很强大,但是大家依旧更关注各种Transformer的变体。
毕竟整个学术社区在注意力机制上深耕多年,从模型、标准库到算子、GPU,此时完全抛弃之前的研究、转向Mamba的SSM不太现实,也让Mamba架构显得非常格格不入。
于是,我们看到Mamba-2的论文在更高层面上将SSM和注意力机制统一了起来,同时相比Mamba-1实现了2~8倍的速度提升。
论文地址:https://arxiv.org/abs/2405.21060
就在大家都期待着「王者归来」的Mamba-2与Transformer一决高下时,英伟达、威斯康星-麦迪逊大学、普林斯顿、CMU等多个机构的作者共同发表了一篇实证研究文章,发现基于Mamba架构的语言模型在长上下文任务上不敌Transformer。
其实不管出现哪种创新的方法或模型,有论文提出批评意见总是难免的。但细看这篇文章居然发现,Mamba的创造者Tri Dao和Albert Gu两人竟然也在作者列表中。
论文地址:https://arxiv.org/abs/2406.07887
在此为两位科学家实事求是的精神点赞。
此外,作者列表中还能发掘到另一个华点——Albert Gu和Tri Dao都有了新title。
Albert Gu现任Cartesia AI的联合创始人兼首席科学家,他们最新的产品是实时语音交互API Cartesia Sonic。
https://cartesia.ai
Tri Dao是Together AI的创始科学家,该公司主要提供云服务,同时也贡献前沿的开源研究。
https://www.together.ai
接下来我们还是详细看看,这篇文章对Mamba和Transformer的能力具体做了哪些对比研究。
简介
在迄今为止的研究中(包括提出Mamba架构的论文),SSM与Transformer的对比都只进行了较小规模的实验(<3B参数,<1T token),这些结论在训练预算更大的情况下是否成立?
这篇技术报告就是要回答这个问题。作者分别训练出Mamba、Mamba-2、Mamba-2-Hybrid、Transformer等4种架构的8B参数模型,在35个NLP下游任务中对比性能。
训练数据包括1.1T和3.5T两个数据集,都是英伟达用于训练Nemotron-4的数据集的前身,由70%英语、15%非英语和15%代码组成
其中,Mamba-2-Hybrid是一个SSM-Transformer的混合架构模型,包含24个Mamba-2层,以及均匀分布在整个模型中的4个自注意力层和28个MLP层。
总体而言,这项对比实验消除了比较不同LLM的常见困难,包括训练数据、分词器、评估管道等方面,确保评估流程的标准和可重复性。
为了方便复现和进一步研究,用于训练Mamba、Mamba-2和Mamba-2-Hybrid的代码已经开源,而且研究团队还在HuggingFace上发布了Mamba-2 8B和Mamba-2-Hybrid 8B的模型权重(作为英伟达Megatron-LM框架和代码库的一部分)。
https://huggingface.co/nvidia
实验结果表明,虽然Mamba和Mamba-2更擅长建模语言,但在上下文学习方面,以及从上下文中回忆信息时,性能落后于Transformer模型。
尤其是在MMLU基准上,即使提高了训练数据的token数量,基于Mamba的模型依旧和Transformer有不小的差距。
Mamba vs. Transformer
用于评估的35个下游任务大致包含3个类别:
-
标准短上下文任务(12个):HellaSwag、ARC-Easy、ARC-Challenge、MMLU、OpenBookQA、TruthfulQA等
-
自然长上下文任务(9个):LongBench中的6个任务和LM Evaluation Harness框架中的3个任务
-
综合长上下文任务(14个):RULER框架中的13个开源测试(包括「大海捞针」的8个变体)以及今年刚提出的「电话簿」(Phonebook)任务,旨在衡量模型在长输入文本中检索、跟踪、聚合信息的能力。
表2展示了经过1.1T数据训练后,纯SSM架构的Mamba和Mamba-2与Transformer模型的部分评估结果。
在常见任务上,Mamba和Mamba-2的性能都可以匹配甚至超过Transformer模型,但MMLU基准是一个例外。进行零样本或少样本学习时,Mamba-2相比Transformer分别有10分和17分的差距。
因为在1.1T数据集上Mamba模型的训练速度就已经比Mamba-2慢了将近3×(模型的状态维度较大),出于效率方面的考量,在3.5T数据集上只训练了Mamba-2模型和Transormer模型,部分结果如表3所示。
从表3可知,更多的训练数据有助于Mamba-2在MMLU任务上得到改进,5-shot分数的差距缩小到仅1.37分,其他任务上依旧全面领先Transformer。
Mamba折戟MMLU与电话簿任务
由于MMLU在一众下游任务的结果中显得如此反常,论文对此进行了更细致的拆解和讨论。
如上图所示,MMLU的任务类似于考试中的选择题,但在cloze格式中也可以不提供备选答案,以填空题的方式提供给模型。
表4中提供了MMLU按照格式细分后,3个模型各自的分数(用1.1T token训练)。在标准模式和选择题模式中,Mamba架构不敌Transformer,但在填空题模式中居然实现了分数反超。
结合表3中的结果,我们有理由推断,纯SSM模型和Transformer模型包含的知识内容应该是同等级别的,但前者需要更多的训练才能理解MMLU的前两种格式。
作者推断,这种差距可能源于Transformer强大的上下文学习能力,可以看到该模型从0-shot到5-shot的准确度提升非常明显。
此外,SSM模型可能无法直接将答案所需的知识路由到输出的单个答案token中(即ABCD选项的其中一个),而这正是自注意力层擅长的任务。
此外,Mamba系列模型在「电话簿」上的表现也并不理想,该任务旨在衡量模型通过少数示例进行上下文学习,以及从上下文中复制信息的能力。
下图展现了任务的两种变体,标准版是先提供整个电话簿,再给出目标查询;反转版则是先查询,再给电话簿。
图3a、c分别展示了3个模型在这两个任务变体上的准确率。
Transformer在电话簿长度不超过预训练的上下文长度(4096)时,准确率接近100%,相比之下,Mamba和Mamba-2在输入序列达到500 token时就出现了显著的性能滑坡。
如果仔细观察Mamba系列的输出答案(图2b),可以发现SSM架构的模型并非完全无法记忆上下文信息,而是保留了一些模糊记忆,给出的电话号码通常有几位是正确的。
综合以上结果,我们可以将MMLU和「电话簿」任务确立为纯SSM架构模型的挑战性任务,并且推测出可能原因:这两个任务需要上下文学习、token间信息路由以及从上下文复制的能力,它们可能是Mamba系列模型的能力软肋。
SSM-Transformer混合架构
由于在MMLU和「电话簿」任务上看到了SSM架构的能力缺陷,作者想到——让SSM和Transformer强强联合,能够起到取长补短的效果?
于是他们将自注意力和MLP层添加到Mamba架构中,想看看模型能否克服上述问题。
论文首先报告了一系列消融实验的结果,通过对比在下游任务上的表现,探索出了能达到最佳性能的架构设计与参数(表6)。
56层的Mamba-2-Hybrid中包含4个(7.1%)自注意力层,24 个(42.9%)Mamba-2层和28个(50%)MLP 层,其中Mamba-2层使用与Mamba-2模型相同的参数。
自注意力、MLP层的数量以及MLP层扩展因子这些参数的选择并非随机,而是根据验证集上损失值结果(图4)进行的最优化设计。
消融实验的结果还显示,混合模型中不添加旋转位置编码(RoPE)能达到更好的下游任务性能(表5),而且Mamba层、自注意力层、MLP层的顺序也会影响模型能力。
首先,Mamba层必须出现在架构的开头,以确保模型自然地学习到位置信息。相比使用重复块模式,将自注意力和MLP均匀分散在整个模型是更好的配置。
而且通过计算验证集上的模型困惑度(perplexity)可以得知,相比多头注意力(MHA),使用组查询注意力层(GQA)能减少推理计算量和内存量,但几乎不会造成模型质量的下降。
效率方面,Mamba-2-Hybrid实现了29.9%的FLOP利用率(MFU),与Transfomer的30.7%基本相当。此外,前者有推理速度方面的巨大优势。
在长上下文情境中,受益于多个SSM层的存在,Mamba-2-Hybrid的token生成速度比Transformer加速了将近8×(图5)。
评估
测评发现,这种混合架构果然有了「取长补短」的效果,混合架构在5-shot MMLU测评中同时超过了单纯的Transformer和SSM架构,取得得了最高准确度(图6)。
从表7中的多个基准总体来看,Mamba-2-Hybrid在效率更高的同时,性能也超过了Transformer模型。
相比Mamba-2,混合架构的长上下文能力也得到了显著提高(表10),在RULER基准上的综合任务、「大海捞针」任务的平均成绩也都超过了Transformer。
在Mamba系列表现较差的「电话簿」任务上,Mamba-2-Hybrid可以在预训练上下文长度 (4K) 内以近乎完美的精度完成电话簿任务,还可以稍微超出该长度进行泛化,在最多5.5k token的电话簿上实现100%准确率。
甚至,Mamba-2-Hybrid的潜力还不止于此,当预训练长度扩展到128k并在4个自注意力层中使用全局注意力时,「电话簿」任务的100%准确率也延伸到了将近150k token。
结论
论文开头的评估结果表明,在更大训练预算的情况下,纯SSM模型依旧能在下游任务上超过Transformer,但上下文学习和信息检索能力有所局限。
基于此,作者提出的混合架构模型Mamba-2-Hybrid能够在提高效率的同时继续表现出比Transformer更强大的性能,并弥补了纯SSM架构的相关缺陷。
这项研究所展示的全面结果告诉我们,Mamba和Transformer这两种架构各有长短,也许并不需要其中一个取代另一个,将二者结合起来是一条值得探索的、有巨大潜力的路径。 Taobao 开发板商城 whaosoft aiot http://143ai.com 天皓智联
参考资料:
https://arxiv.org/pdf/2406.07887