函数f(x)在某点x0处可微充分必要条件是可导的推导过程

背景

同济大学应用数学系《高等数学》第五版微分基础定义中说,函数 f(x)f(x)f(x) 在点 x0x_0x0 处可微的充分必要条件是函数 f(x)f(x)f(x) 在点 x0x_0x0 处可导。

本章节来整理一下这个结论的推导过程,这个推导过程涉及两个数学概念:

  1. 充分必要条件;
  2. 极限和无穷小的关系。
  3. 集合的邻域,以点 aaa 为中心的任何开区间称为点 aaa 的邻域 U(a)U(a)U(a)。设 δ\deltaδ 是任意一个正数,则开区间 (a−δ,a+δ)(a-\delta,a+\delta)(aδ,a+δ) 称为点 a 的 δ\deltaδ 邻域,记作 U(a,δ)U(a,\delta)U(a,δ);去掉中间点 a 后的邻域记作 U(。a,δ)U\overset {。}(a,\delta)U(a,δ),读作点 a 去 δ\deltaδ 的邻域「注:U上的圆圈应该在正中间的,但是没找到语法先凑合看一下; 邻域半径 δ\deltaδ 读作 delta ,Δ\DeltaΔ 是它的大写形式 」。
  4. 对任意 ∀ε\forall \varepsilonε ,存在量词符号 ∃\exists
  5. 极限的定义。

极限的定义

设函数 f(x) 在点 x0 处的某一去心邻域内有定义,如果存在常数 A,对于任意给定的正数 ε\varepsilonε (无论它多么小),总是存在正数 δ\deltaδ 使得当 x 满足不等式 0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ 时,对应的函数值 f(x) 都满足不等式:
∣f(x)−A∣<ε \begin{align} |f(x)-A|< \varepsilon \end{align} f(x)A<ε

这个极限定义,更简单的表述为:
lim⁡x→x0f(x)=A等价于:∀ε,∃δ>0,当0<∣x−x0∣<δ时,有|f(x)−A∣<ε。 \lim_{x\to x_0} f(x) = A 等价于:\forall \varepsilon,\exists\delta>0,当 0<| x - x_0| < \delta 时,有 |f(x) -A | < \varepsilon。 xx0limf(x)=A等价于:εδ>0,当0<xx0<δ时,有|f(x)A<ε

充分必要条件

充分必要条件,是逻辑推理的一个重要概念,我不记得是什么阶段的数学概念了。

其定义如下:

充分必要条件,又称充要条件,是数学和逻辑学中的一种重要概念。具体来说,如果能从命题p推出命题q,而且也能从命题q推出命题p ,则称p是q的充分必要条件,且q也是p的充分必要条件。这种关系在数学中通常用“当且仅当”来表示。
充分必要条件是一种双向推理的关系,即一个命题的成立必然导致另一个命题成立,反之亦然。这一概念在逻辑推理和数学证明中具有重要作用,能够帮助人们更准确地分析和解决问题。

假设 A 是条件, B 是结论,这三种关系为:

  1. 充要必要条件:条件A 能推出结论B ,且由结论 B 能推出条件 A ,则称 A 是 B 的充分且必要条件,或者 B 是 A 的充分且必要条件。
  2. 充分不必要:条件 A 能推出结论 B,反之不能,则称条件 A 是 结论 B 的充分不必要条件。
  3. 必要不充分:从结论 B 能推出条件 A,反之不能,则称为结论 B 是条件 A 的必要不充分条件。

极限和无穷小的关系

无穷小定义:如果函数 f(x)f(x)f(x)x→x0x\to x_0xx0(或 x→∞x\to\inftyx) 时的极限为零,那么称函数 f(x)f(x)f(x) 为当 x→x0x\to x_0xx0(或 x→∞x\to\inftyx) 时的无穷小。

0 可以作为无穷小的唯一常量,如果 f(x)≡0f(x)\equiv0f(x)0,对于任意一个给定的正数 ε\varepsilonε,总有 ∣f(x)∣<ε|f(x)|<\varepsilonf(x)<ε,因为 f(x) 对任意 x 来说都等于 0,而 0 的绝对值小于任意一个正数。

无穷小相关的定理 1:在自变量在同一变化过程 x→x0x\to x_0xx0(或 x→∞x\to\inftyx) 中,函数 f(x)f(x)f(x) 具有极限 AAA 的充分必要条件是 f(x)=A+αf(x)=A+\alphaf(x)=A+α,其中 α\alphaα 是无穷小。

Part 1 充分性证明:设 f(x)=A+αf(x)=A+\alphaf(x)=A+α,其中 A 是常量,α\alphaαx→x0x\to x_0xx0 的无穷小,则 lim⁡x→x0f(x)=A\lim_{x\to x_0} f(x)=Alimxx0f(x)=A。由条件等式进行绝对值转换得到:
∣f(x)−A∣=∣α∣ \begin{align} |f(x)-A|=|\alpha| \end{align} f(x)A=α
因为 α\alphaαx→x0x\to x_0xx0 的无穷小【无线趋于0,所以∣α∣|\alpha|α> 0】,所以 ∀ε>0,∃δ>0\forall\varepsilon>0,\exist\delta>0ε>0δ>0 ,使 0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ 时,有 ∣α∣<ε|\alpha|<\varepsilonα<ε 。代入公式(2)即:∣f(x)−A∣=∣α∣<ε|f(x)-A|=|\alpha|<\varepsilonf(x)A=α<ε

而这刚好就是函数极限的定义,所以就证明了 A 是 f(x) 当 x→x0x\to x_0xx0 时的极限。

Part 2必要性证明:如果 lim⁡x→x0f(x)=A\lim_{x \to x_0} f(x)=Alimxx0f(x)=A,则 f(x)=A+αf(x)=A+\alphaf(x)=A+α

根据极限的定义,lim⁡x→x0f(x)=A\lim_{x \to x_0} f(x)=Alimxx0f(x)=A,则 ∀ε>0,∃δ>0\forall\varepsilon>0,\exists\delta>0ε>0δ>0,使 0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ 时,有 ∣f(x)−A∣<ε|f(x)-A|<\varepsilonf(x)A<ε

δ=f(x)−A\delta=f(x)-Aδ=f(x)A,则 α\alphaαx→x0x \to x_0xx0 时的无穷小,且 f(x)=A+αf(x)=A+\alphaf(x)=A+α

极限的定义

可微的定义

可微充要条件可导

可微的充分必要条件是可导,就需要证明下面两个过程。

  1. f(x)f(x)f(x) 在点 x0x_0x0 处可微,可推出函数 f(x)f(x)f(x) 在点 x0x_0x0 处导数存在。
  2. f(x)f(x)f(x) 在点 x0x_0x0 处可导,可推出函数 f(x)f(x)f(x) 在点 x0x_0x0 处可微。

从可微等式,推导出 f′(x)f^{'}(x)f(x) 存在;
f′(x)f^{'}(x)f(x) 存在推导出 dy 的部分。

未完,待续……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值