背景
同济大学应用数学系《高等数学》第五版微分基础定义中说,函数 f(x)f(x)f(x) 在点 x0x_0x0 处可微的充分必要条件是函数 f(x)f(x)f(x) 在点 x0x_0x0 处可导。
本章节来整理一下这个结论的推导过程,这个推导过程涉及两个数学概念:
- 充分必要条件;
- 极限和无穷小的关系。
- 集合的邻域,以点 aaa 为中心的任何开区间称为点 aaa 的邻域 U(a)U(a)U(a)。设 δ\deltaδ 是任意一个正数,则开区间 (a−δ,a+δ)(a-\delta,a+\delta)(a−δ,a+δ) 称为点 a 的 δ\deltaδ 邻域,记作 U(a,δ)U(a,\delta)U(a,δ);去掉中间点 a 后的邻域记作 U(。a,δ)U\overset {。}(a,\delta)U(。a,δ),读作点 a 去 δ\deltaδ 的邻域「注:U上的圆圈应该在正中间的,但是没找到语法先凑合看一下; 邻域半径 δ\deltaδ 读作 delta ,Δ\DeltaΔ 是它的大写形式 」。
- 对任意 ∀ε\forall \varepsilon∀ε ,存在量词符号 ∃\exists∃:
- 极限的定义。
极限的定义
设函数 f(x) 在点 x0 处的某一去心邻域内有定义,如果存在常数 A,对于任意给定的正数 ε\varepsilonε (无论它多么小),总是存在正数 δ\deltaδ 使得当 x 满足不等式 0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ 时,对应的函数值 f(x) 都满足不等式:
∣f(x)−A∣<ε
\begin{align}
|f(x)-A|< \varepsilon
\end{align}
∣f(x)−A∣<ε
这个极限定义,更简单的表述为:
limx→x0f(x)=A等价于:∀ε,∃δ>0,当0<∣x−x0∣<δ时,有|f(x)−A∣<ε。
\lim_{x\to x_0} f(x) = A 等价于:\forall \varepsilon,\exists\delta>0,当 0<| x - x_0| < \delta 时,有 |f(x) -A | < \varepsilon。
x→x0limf(x)=A等价于:∀ε,∃δ>0,当0<∣x−x0∣<δ时,有|f(x)−A∣<ε。
充分必要条件
充分必要条件,是逻辑推理的一个重要概念,我不记得是什么阶段的数学概念了。
其定义如下:
充分必要条件,又称充要条件,是数学和逻辑学中的一种重要概念。具体来说,如果能从命题p推出命题q,而且也能从命题q推出命题p ,则称p是q的充分必要条件,且q也是p的充分必要条件。这种关系在数学中通常用“当且仅当”来表示。
充分必要条件是一种双向推理的关系,即一个命题的成立必然导致另一个命题成立,反之亦然。这一概念在逻辑推理和数学证明中具有重要作用,能够帮助人们更准确地分析和解决问题。
假设 A 是条件, B 是结论,这三种关系为:
- 充要必要条件:条件A 能推出结论B ,且由结论 B 能推出条件 A ,则称 A 是 B 的充分且必要条件,或者 B 是 A 的充分且必要条件。
- 充分不必要:条件 A 能推出结论 B,反之不能,则称条件 A 是 结论 B 的充分不必要条件。
- 必要不充分:从结论 B 能推出条件 A,反之不能,则称为结论 B 是条件 A 的必要不充分条件。
极限和无穷小的关系
无穷小定义:如果函数 f(x)f(x)f(x) 当 x→x0x\to x_0x→x0(或 x→∞x\to\inftyx→∞) 时的极限为零,那么称函数 f(x)f(x)f(x) 为当 x→x0x\to x_0x→x0(或 x→∞x\to\inftyx→∞) 时的无穷小。
0 可以作为无穷小的唯一常量,如果 f(x)≡0f(x)\equiv0f(x)≡0,对于任意一个给定的正数 ε\varepsilonε,总有 ∣f(x)∣<ε|f(x)|<\varepsilon∣f(x)∣<ε,因为 f(x) 对任意 x 来说都等于 0,而 0 的绝对值小于任意一个正数。
无穷小相关的定理 1:在自变量在同一变化过程 x→x0x\to x_0x→x0(或 x→∞x\to\inftyx→∞) 中,函数 f(x)f(x)f(x) 具有极限 AAA 的充分必要条件是 f(x)=A+αf(x)=A+\alphaf(x)=A+α,其中 α\alphaα 是无穷小。
Part 1 充分性证明:设 f(x)=A+αf(x)=A+\alphaf(x)=A+α,其中 A 是常量,α\alphaα 是 x→x0x\to x_0x→x0 的无穷小,则 limx→x0f(x)=A\lim_{x\to x_0} f(x)=Alimx→x0f(x)=A。由条件等式进行绝对值转换得到:
∣f(x)−A∣=∣α∣
\begin{align}
|f(x)-A|=|\alpha|
\end{align}
∣f(x)−A∣=∣α∣
因为 α\alphaα 是 x→x0x\to x_0x→x0 的无穷小【无线趋于0,所以∣α∣|\alpha|∣α∣> 0】,所以 ∀ε>0,∃δ>0\forall\varepsilon>0,\exist\delta>0∀ε>0,∃δ>0 ,使 0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ 时,有 ∣α∣<ε|\alpha|<\varepsilon∣α∣<ε 。代入公式(2)即:∣f(x)−A∣=∣α∣<ε|f(x)-A|=|\alpha|<\varepsilon∣f(x)−A∣=∣α∣<ε 。
而这刚好就是函数极限的定义,所以就证明了 A 是 f(x) 当 x→x0x\to x_0x→x0 时的极限。
Part 2必要性证明:如果 limx→x0f(x)=A\lim_{x \to x_0} f(x)=Alimx→x0f(x)=A,则 f(x)=A+αf(x)=A+\alphaf(x)=A+α。
根据极限的定义,limx→x0f(x)=A\lim_{x \to x_0} f(x)=Alimx→x0f(x)=A,则 ∀ε>0,∃δ>0\forall\varepsilon>0,\exists\delta>0∀ε>0,∃δ>0,使 0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ 时,有 ∣f(x)−A∣<ε|f(x)-A|<\varepsilon∣f(x)−A∣<ε。
令 δ=f(x)−A\delta=f(x)-Aδ=f(x)−A,则 α\alphaα 是 x→x0x \to x_0x→x0 时的无穷小,且 f(x)=A+αf(x)=A+\alphaf(x)=A+α。
极限的定义
可微的定义
可微充要条件可导
可微的充分必要条件是可导,就需要证明下面两个过程。
- f(x)f(x)f(x) 在点 x0x_0x0 处可微,可推出函数 f(x)f(x)f(x) 在点 x0x_0x0 处导数存在。
- f(x)f(x)f(x) 在点 x0x_0x0 处可导,可推出函数 f(x)f(x)f(x) 在点 x0x_0x0 处可微。
从可微等式,推导出 f′(x)f^{'}(x)f′(x) 存在;
从 f′(x)f^{'}(x)f′(x) 存在推导出 dy 的部分。
未完,待续……