PyTorch 数据并行处理

本文介绍了如何在PyTorch中使用DataParallel进行数据并行处理,以便在多个GPU上运行模型。通过nn.DataParallel包装模型,并结合device转移,实现模型在多个GPU上的分布式计算,观察不同GPU数量下输入和输出张量的大小变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch 数据并行处理
可选择:数据并行处理(文末有完整代码下载)
本文将学习如何用 DataParallel 来使用多 GPU。 通过 PyTorch 使用多个 GPU 非常简单。可以将模型放在一个 GPU:
device = torch.device(“cuda:0”)
model.to(device)
然后,可以复制所有的张量到 GPU:

mytensor = my_tensor.to(device)

请注意,只是调用 my_tensor.to(device) 返回一个 my_tensor 新的复制在GPU上,而不是重写 my_tensor。需要分配一个新的张量并且在 GPU 上使用这个张量。
在多 GPU 中执行前馈,后馈操作是非常自然的。尽管如此,PyTorch 默认只会使用一个 GPU。通过使用 DataParallel 让你的模型并行运行,可以很容易的在多 GPU 上运行操作。
model = nn.DataParallel(model)

这是整个教程的核心,接下来将会详细讲解。 引用和参数
引入 PyTorch 模块和定义参数
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

参数
input_size = 5
output_size = 2

batch_size = 30
data_size = 100
设备
device = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)

实验(玩具)数据
生成一个玩具数据。只需要实现 getitem.

class RandomDataset(Dataset):

def __init__(self, size, length):
    self.len = length
    self.data = torch.randn(length, size)

def __getitem__(self, index):
    return self.data[index]

def __len__(self):
    return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
简单模型
为了做一个小 demo,模型只是获得一个输入,执行一个线性操作,然后给一个输出。尽管如此,可以使用 DataParallel 在任何模型(CNN, RNN, Capsule Net 等等.)
放置了一个输出声明在模型中来检测输出和输入张量的大小。请注意在 batch rank 0 中的输出。

class Model(nn.Module):
# Our model

def __init__(self, input_size, output_size):
    super(Model, self).__init__()
    self.fc = nn.Linear(input_size, output_size)

def forward(self, input):
    output = self.fc(input)
    print("\tIn Model: input 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值